論文の概要: Dual-domain Modulation Network for Lightweight Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2503.10047v1
- Date: Thu, 13 Mar 2025 04:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:51:30.384160
- Title: Dual-domain Modulation Network for Lightweight Image Super-Resolution
- Title(参考訳): 軽量画像超解像のためのデュアルドメイン変調ネットワーク
- Authors: Wenjie Li, Heng Guo, Yuefeng Hou, Guangwei Gao, Zhanyu Ma,
- Abstract要約: 軽量画像超解像(SR)は、低解像度画像から限られた計算コストで高解像度画像を再構成することを目的としている。
既存の周波数ベースSR法では、全体構造と高周波部品の再構築のバランスが取れない。
本稿では、ウェーブレット情報とフーリエ情報の両方を導入し、我々のモデルが高周波特徴と全体のSR構造再構成の両方を考慮できるようにする。
- 参考スコア(独自算出の注目度): 26.992373105057684
- License:
- Abstract: Lightweight image super-resolution (SR) aims to reconstruct high-resolution images from low-resolution images with limited computational costs. We find existing frequency-based SR methods cannot balance the reconstruction of overall structures and high-frequency parts. Meanwhile, these methods are inefficient for handling frequency features and unsuitable for lightweight SR. In this paper, we show introducing both wavelet and Fourier information allows our model to consider both high-frequency features and overall SR structure reconstruction while reducing costs. Specifically, we propose a dual-domain modulation network that utilize wavelet-domain modulation self-Transformer (WMT) plus Fourier supervision to modulate frequency features in addition to spatial domain modulation. Compared to existing frequency-based SR modules, our WMT is more suitable for frequency learning in lightweight SR. Experimental results show that our method achieves a comparable PSNR of SRFormer and MambaIR while with less than 50% and 60% of their FLOPs and achieving inference speeds 15.4x and 5.4x faster, respectively, demonstrating the effectiveness of our method on SR quality and lightweight. Codes will be released upon acceptance.
- Abstract(参考訳): 軽量画像超解像(SR)は、低解像度画像から限られた計算コストで高解像度画像を再構成することを目的としている。
既存の周波数ベースSR法では、全体の構造と高周波部品の再構成のバランスが取れない。
一方、これらの手法は周波数特性の処理には不適であり、軽量SRには適さない。
本稿では、ウェーブレット情報とフーリエ情報の両方を導入することにより、コスト削減を図りながら、高周波数特徴と全体のSR構造再構築を両立させることができることを示す。
具体的には、ウェーブレット領域変調自己変換器(WMT)とフーリエ制御を用いて、空間領域変調に加えて周波数特性を変調する二重領域変調ネットワークを提案する。
既存の周波数ベースSRモジュールと比較して、WMTは軽量SRの周波数学習に適している。
実験の結果, 提案手法は, FLOPの50%以下, 60%以下でSRFormerとMambaIRと同等のPSNRを実現し, 推論速度を15.4倍, 5.4倍高速化し, SR品質および軽量化における有効性を示した。
コードは受理後に公開される。
関連論文リスト
- FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
論文 参考訳(メタデータ) (2024-08-25T03:53:17Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
我々は、リモートセンシング画像(RSI)の超高解像度化のために、視覚状態空間モデル(Mamba)を統合するための最初の試みを開発した。
より優れたSR再構築を実現するため,FMSRと呼ばれる周波数支援型Mambaフレームワークを考案した。
我々のFMSRは、周波数選択モジュール(FSM)、ビジョン状態空間モジュール(VSSM)、ハイブリッドゲートモジュール(HGM)を備えた多層融合アーキテクチャを備えている。
論文 参考訳(メタデータ) (2024-05-08T11:09:24Z) - A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information [42.55177009667711]
画像超解像(SR)は、低分解能(LR)画像において失われた高周波情報を復元する技術である。
本稿では、周波数領域における画像の特徴を考察し、新しいスケール・アービタリー画像SRネットワークを設計する。
論文 参考訳(メタデータ) (2022-12-08T15:10:49Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
論文 参考訳(メタデータ) (2021-11-21T11:49:12Z) - MASA-SR: Matching Acceleration and Spatial Adaptation for
Reference-Based Image Super-Resolution [74.24676600271253]
本稿では、RefSRのためのMASAネットワークを提案し、これらの問題に対処するために2つの新しいモジュールを設計する。
提案したMatch & extract Moduleは、粗大な対応マッチング方式により計算コストを大幅に削減する。
空間適応モジュールは、LR画像とRef画像の分布の差を学習し、Ref特徴の分布を空間適応的にLR特徴の分布に再マップする。
論文 参考訳(メタデータ) (2021-06-04T07:15:32Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。