Physics-Guided Discovery of Highly Nonlinear Parametric Partial
Differential Equations
- URL: http://arxiv.org/abs/2106.01078v4
- Date: Fri, 26 May 2023 01:17:43 GMT
- Title: Physics-Guided Discovery of Highly Nonlinear Parametric Partial
Differential Equations
- Authors: Yingtao Luo, Qiang Liu, Yuntian Chen, Wenbo Hu, Tian Tian, Jun Zhu
- Abstract summary: Partial differential equations (PDEs) that fit scientific data can represent physical laws with explainable mechanisms.
We propose a novel physics-guided learning method, which encodes observation knowledge and incorporates basic physical principles and laws.
Experiments show that our proposed method is more robust against data noise, and can reduce the estimation error by a large margin.
- Score: 29.181177365252925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) that fit scientific data can represent
physical laws with explainable mechanisms for various mathematically-oriented
subjects, such as physics and finance. The data-driven discovery of PDEs from
scientific data thrives as a new attempt to model complex phenomena in nature,
but the effectiveness of current practice is typically limited by the scarcity
of data and the complexity of phenomena. Especially, the discovery of PDEs with
highly nonlinear coefficients from low-quality data remains largely
under-addressed. To deal with this challenge, we propose a novel physics-guided
learning method, which can not only encode observation knowledge such as
initial and boundary conditions but also incorporate the basic physical
principles and laws to guide the model optimization. We theoretically show that
our proposed method strictly reduces the coefficient estimation error of
existing baselines, and is also robust against noise. Extensive experiments
show that the proposed method is more robust against data noise, and can reduce
the estimation error by a large margin. Moreover, all the PDEs in the
experiments are correctly discovered, and for the first time we are able to
discover three-dimensional PDEs with highly nonlinear coefficients.
Related papers
- Evaluating Uncertainty Quantification approaches for Neural PDEs in
scientific applications [0.0]
This work evaluates various Uncertainty Quantification (UQ) approaches for both Forward and Inverse Problems in scientific applications.
Specifically, we investigate the effectiveness of Bayesian methods, such as Hamiltonian Monte Carlo (HMC) and Monte-Carlo Dropout (MCD)
Our results indicate that Neural PDEs can effectively reconstruct flow systems and predict the associated unknown parameters.
arXiv Detail & Related papers (2023-11-08T04:52:20Z) - Filtered Partial Differential Equations: a robust surrogate constraint in physics-informed deep learning framework [1.220743263007369]
We propose a surrogate constraint (filtered PDE, FPDE in short) of the original physical equations to reduce the influence of noisy and sparse observation data.
In the noise and sparsity experiment, the proposed FPDE models have better robustness than the conventional PDE models.
For combining real-world experiment data into physics-informed training, the proposed FPDE constraint is useful.
arXiv Detail & Related papers (2023-11-07T07:38:23Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - D-CIPHER: Discovery of Closed-form Partial Differential Equations [80.46395274587098]
We propose D-CIPHER, which is robust to measurement artifacts and can uncover a new and very general class of differential equations.
We further design a novel optimization procedure, CoLLie, to help D-CIPHER search through this class efficiently.
arXiv Detail & Related papers (2022-06-21T17:59:20Z) - The Franz-Parisi Criterion and Computational Trade-offs in High
Dimensional Statistics [73.1090889521313]
This paper aims to make a rigorous connection between the different low-degree and free-energy based approaches.
We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness.
Results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools.
arXiv Detail & Related papers (2022-05-19T17:39:29Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
Learning [11.641708412097659]
We propose a physics-encoded discrete learning framework for discovering PDEs from noisy and scarce data.
We validate our method on three nonlinear PDE systems.
arXiv Detail & Related papers (2022-01-28T07:49:48Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITY is a principled approach for augmenting incomplete physical dynamics described by differential equations with deep data-driven models.
It consists in decomposing the dynamics into two components: a physical component accounting for the dynamics for which we have some prior knowledge, and a data-driven component accounting for errors of the physical model.
arXiv Detail & Related papers (2020-10-09T09:31:03Z) - Physics-informed learning of governing equations from scarce data [14.95055620484844]
This work introduces a physics-informed deep learning framework to discover governing partial differential equations (PDEs) from scarce and noisy representation data.
The efficacy and robustness of this method are demonstrated, both numerically and experimentally, on discovering a variety of PDE systems.
The resulting computational framework shows the potential for closed-form model discovery in practical applications.
arXiv Detail & Related papers (2020-05-05T22:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.