論文の概要: Accurate and Robust Deep Learning Framework for Solving Wave-Based
Inverse Problems in the Super-Resolution Regime
- arxiv url: http://arxiv.org/abs/2106.01143v1
- Date: Wed, 2 Jun 2021 13:30:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-03 14:39:30.838940
- Title: Accurate and Robust Deep Learning Framework for Solving Wave-Based
Inverse Problems in the Super-Resolution Regime
- Title(参考訳): 超解法レジームにおけるウェーブベース逆問題解決のための高精度かつロバストなディープラーニングフレームワーク
- Authors: Matthew Li, Laurent Demanet, Leonardo Zepeda-N\'u\~nez
- Abstract要約: 本稿では,すべての長さスケールにわたる逆波散乱問題を包括的に解決するエンドツーエンドのディープラーニングフレームワークを提案する。
本フレームワークは,新たに導入された広帯域バタフライネットワークと,トレーニング中に動的にノイズを注入する簡単なトレーニング手順から構成される。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an end-to-end deep learning framework that comprehensively solves
the inverse wave scattering problem across all length scales. Our framework
consists of the newly introduced wide-band butterfly network coupled with a
simple training procedure that dynamically injects noise during training. While
our trained network provides competitive results in classical imaging regimes,
most notably it also succeeds in the super-resolution regime where other
comparable methods fail. This encompasses both (i) reconstruction of scatterers
with sub-wavelength geometric features, and (ii) accurate imaging when two or
more scatterers are separated by less than the classical diffraction limit. We
demonstrate these properties are retained even in the presence of strong noise
and extend to scatterers not previously seen in the training set. In addition,
our network is straightforward to train requiring no restarts and has an online
runtime that is an order of magnitude faster than optimization-based
algorithms. We perform experiments with a variety of wave scattering mediums
and we demonstrate that our proposed framework outperforms both classical
inversion and competing network architectures that specialize in oscillatory
wave scattering data.
- Abstract(参考訳): 本稿では,すべての長さスケールにわたる逆波散乱問題を包括的に解決するエンドツーエンドのディープラーニングフレームワークを提案する。
本フレームワークは,新たに導入された広帯域バタフライネットワークと,トレーニング中に動的にノイズを注入する簡単なトレーニング手順から構成される。
我々の訓練されたネットワークは、古典的な撮像方式で競争的な結果をもたらすが、最も注目すべきは、他の同等の手法が失敗する超解像方式でも成功することだ。
これは、(i)波長以下の幾何学的特徴を持つ散乱器の再構成と、(ii)2つ以上の散乱器を古典的な回折限界以下で分離した場合の正確な撮像の両方を含む。
これらの特性は, 強い雑音の存在下においても保持され, トレーニングセットにこれまでなかった散乱体にまで拡張されることを示す。
さらに、当社のネットワークはリスタート不要のトレーニングが簡単で、最適化ベースのアルゴリズムよりも桁違いに速いオンラインランタイムを備えています。
我々は,様々な散乱媒質を用いて実験を行い,振動波散乱データに特化する古典的インバージョンと競合するネットワークアーキテクチャの両方に優れた性能を示す。
関連論文リスト
- WaveMo: Learning Wavefront Modulations to See Through Scattering [18.808523352208407]
本稿では,散乱媒質を用いた画像に最適な波面変調を設計する際のギャップに対処する,新たな学習基盤フレームワークを提案する。
我々は、ウェーブフロント変調と計算的に軽量なフィードフォワード「プロキシ」再構成ネットワークを共同で最適化する。
筆者らのフレームワークが生み出した学習変調は, 目に見えない散乱シナリオを効果的に一般化し, 優れた汎用性を示す。
論文 参考訳(メタデータ) (2024-04-11T17:58:44Z) - An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem [12.676629870617337]
フルウェーブフォーム・インバージョン(FWI)は、高分解能地下物理パラメータを推定する強力な物理画像技術である。
観測の限界、限られたショットや受信機、ランダムノイズなどにより、従来の逆転法は多くの課題に直面している。
物理速度パラメータを正確に再構成することを目的とした教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T08:39:33Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
我々は,ミリ波(mmWave)ネットワークのためのディープラーニング(DL)誘導ハイブリッドビームとパワーアロケーションアプローチを開発した。
教師付き学習と超解像技術の相乗効果を利用して、低オーバヘッドビームとパワーアロケーションを実現する。
論文 参考訳(メタデータ) (2023-05-08T05:40:54Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - Reliable Beamforming at Terahertz Bands: Are Causal Representations the
Way Forward? [85.06664206117088]
マルチユーザ無線システムは、テラヘルツ帯域と大量のアンテナを利用することで、メタバース要件を満たすことができる。
既存の解にはチャネル力学の適切なモデリングが欠如しており、その結果、高流動シナリオにおける不正確なビームフォーミング解が生じる。
ここでは、変分因果推論における新しい人工知能アルゴリズムを利用して、動的で意味論的に認識されたビームフォーミングソリューションを初めて提案する。
論文 参考訳(メタデータ) (2023-03-14T16:02:46Z) - Residual Multiplicative Filter Networks for Multiscale Reconstruction [24.962697695403037]
我々は,学習した再構成の周波数サポートをきめ細かな制御で粗大な最適化を可能にする,新しい座標ネットワークアーキテクチャとトレーニング手法を提案する。
これらの修正によって、自然画像への粗大なフィッティングのマルチスケール最適化が実現されることを示す。
次に, 単粒子Creo-EM再構成問題に対する合成データセットのモデル評価を行った。
論文 参考訳(メタデータ) (2022-06-01T20:16:28Z) - Optical-Flow-Reuse-Based Bidirectional Recurrent Network for Space-Time
Video Super-Resolution [52.899234731501075]
時空間ビデオ超解像(ST-VSR)は、与えられたビデオの空間解像度とフレームレートを同時に増加させる。
既存の手法は通常、近隣の幅広いフレームからの情報を効率的に活用する方法の難しさに悩まされる。
本稿では,隣接するフレーム間の知識を活用するために,ConvLSTMの代わりに粗大な双方向リカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T15:21:30Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
本研究は,大規模深度マップとエゴモーションを予測可能な教師なし学習フレームワークを提案する。
本結果は,KITTI運転データセットの複数シーケンスにおける現在の最先端技術と比較して,高い性能を示す。
論文 参考訳(メタデータ) (2020-11-02T22:26:58Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
ビデオ超解像(VSR)は、複数の低解像度フレームを使用して、各フレームに対して高解像度の予測を生成することを目的としている。
フレーム間およびフレーム内は、時間的および空間的情報を利用するための鍵となるソースである。
VSRのための効果的なマルチ対応アグリゲーションネットワーク(MuCAN)を構築した。
論文 参考訳(メタデータ) (2020-07-23T05:41:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。