論文の概要: SpINR: Neural Volumetric Reconstruction for FMCW Radars
- arxiv url: http://arxiv.org/abs/2503.23313v2
- Date: Fri, 25 Apr 2025 15:33:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 18:47:07.490525
- Title: SpINR: Neural Volumetric Reconstruction for FMCW Radars
- Title(参考訳): SpINR:FMCWレーダの神経体積再構成
- Authors: Harshvardhan Takawale, Nirupam Roy,
- Abstract要約: 本稿では、周波数変調連続波(FMCW)レーダデータを用いたボリューム再構成のための新しいフレームワークSpINRを紹介する。
従来のバックプロジェクション手法や既存の学習ベースアプローチよりも,SpINRの方が優れていることを示す。
- 参考スコア(独自算出の注目度): 0.15193212081459279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce SpINR, a novel framework for volumetric reconstruction using Frequency-Modulated Continuous-Wave (FMCW) radar data. Traditional radar imaging techniques, such as backprojection, often assume ideal signal models and require dense aperture sampling, leading to limitations in resolution and generalization. To address these challenges, SpINR integrates a fully differentiable forward model that operates natively in the frequency domain with implicit neural representations (INRs). This integration leverages the linear relationship between beat frequency and scatterer distance inherent in FMCW radar systems, facilitating more efficient and accurate learning of scene geometry. Additionally, by computing outputs for only the relevant frequency bins, our forward model achieves greater computational efficiency compared to time-domain approaches that process the entire signal before transformation. Through extensive experiments, we demonstrate that SpINR significantly outperforms classical backprojection methods and existing learning-based approaches, achieving higher resolution and more accurate reconstructions of complex scenes. This work represents the first application of neural volumetic reconstruction in the radar domain, offering a promising direction for future research in radar-based imaging and perception systems.
- Abstract(参考訳): 本稿では、周波数変調連続波(FMCW)レーダデータを用いたボリューム再構成のための新しいフレームワークSpINRを紹介する。
バックプロジェクションのような伝統的なレーダイメージング技術は、しばしば理想的な信号モデルを想定し、密度の高い開口サンプリングを必要とし、解像度と一般化の制限をもたらす。
これらの課題に対処するため、SpINRは、暗黙のニューラル表現(INR)を持つ周波数領域でネイティブに動作する、完全に微分可能なフォワードモデルを統合する。
この統合は、FMCWレーダーシステムに固有のビート周波数と散乱器距離の線形関係を利用し、より効率的で正確なシーン形状の学習を容易にする。
さらに、関連する周波数ビンのみの出力を計算することにより、フォワードモデルは変換前の信号全体を処理する時間領域アプローチに比べて計算効率が向上する。
大規模な実験により、SpINRは古典的なバックプロジェクション手法や既存の学習ベースアプローチを大きく上回り、より高解像度で複雑なシーンのより正確な再構築を実現している。
この研究は、レーダ領域におけるニューラルボリューム再構成の最初の応用であり、レーダベースイメージングと知覚システムにおける将来の研究に有望な方向を提供する。
関連論文リスト
- Resource-Efficient Beam Prediction in mmWave Communications with Multimodal Realistic Simulation Framework [57.994965436344195]
ビームフォーミングは、方向と強度を最適化して信号伝送を改善するミリ波通信において重要な技術である。
マルチモーダルセンシング支援ビーム予測は,ユーザ位置やネットワーク条件を予測するために,さまざまなセンサデータを使用して注目されている。
その有望な可能性にもかかわらず、マルチモーダルセンシング支援ビーム予測の採用は、高い計算複雑性、高いコスト、限られたデータセットによって妨げられている。
論文 参考訳(メタデータ) (2025-04-07T15:38:25Z) - Range and Angle Estimation with Spiking Neural Resonators for FMCW Radar [16.91912935835324]
自動車レーダーシステムは、高いサンプリングレートと大規模なデータ帯域幅を管理するという課題に直面している。
ニューロモルフィックコンピューティングは、その固有のエネルギー効率と並列処理能力のために、有望なソリューションを提供する。
本研究では、周波数変調連続波レーダ(FMCW)の信号処理のための新しいスパイキングニューロンモデルを提案する。
論文 参考訳(メタデータ) (2025-03-02T13:51:03Z) - Neural Reflectance Fields for Radio-Frequency Ray Tracing [12.517163884907433]
レイトレーシングは複雑な環境下での高周波(RF)信号の伝搬をモデル化するために広く用いられている。
送信機から受信機へのRF信号の経路損失から材料反射率を効率的に学習することでこの問題に対処する。
RF信号の振幅と位相の両方をモデル化することにより、光からRF領域への神経反射場をモデル化する。
論文 参考訳(メタデータ) (2025-01-05T06:52:35Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
本研究では,これらの課題に対処するための新しいビュー合成手法であるNeRF-VPTを提案する。
提案するNeRF-VPTは、先行レンダリング結果から得られたRGB情報を、その後のレンダリングステージのインストラクティブな視覚的プロンプトとして機能するカスケーディングビュープロンプトチューニングパラダイムを用いている。
NeRF-VPTは、追加のガイダンスや複雑なテクニックに頼ることなく、トレーニングステージ毎に前のステージレンダリングからRGBデータをサンプリングするだけである。
論文 参考訳(メタデータ) (2024-03-02T22:08:10Z) - End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation [9.865041274657823]
本稿では,周波数変調連続波(WFMC)レーダ相互干渉緩和のためのニューラルネットワーク(NN)のトレーニング手法を提案する。
NNが干渉されたレーダー信号をきれいにするために訓練する代わりに、NNをオブジェクト検出マップ上で直接訓練する。
我々は,レーダを用いた物体検出のアルゴリズムであるCA-CFARピーク検出器の連続的な緩和を行う。
論文 参考訳(メタデータ) (2023-12-15T13:47:16Z) - Deep learning-based deconvolution for interferometric radio transient
reconstruction [0.39259415717754914]
LOFAR、MeerKAT/SKA、ASKAP/SKA、そして将来のSKA-LOWのような電波天文学施設は、時間と周波数に大きな感度をもたらす。
これらの施設は、自然によって揮発し、データに検出または見逃される無線過渡現象の高度な研究を可能にする。
これらのトランジェントは、電子の高エネルギー加速のマーカーであり、幅広い時間スケールで表される。
論文 参考訳(メタデータ) (2023-06-24T08:58:52Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
本稿では,スパルス・ボクセル・ブロック・グリッドにおける署名付き距離関数(SDF)を直接使用して,距離のない高速かつ正確なシーン再構成を実現することを提案する。
我々の世界規模で疎密で局所的なデータ構造は、表面の空間的空間性を利用して、キャッシュフレンドリーなクエリを可能にし、マルチモーダルデータへの直接拡張を可能にします。
実験により、我々のアプローチはトレーニングでは10倍、レンダリングでは100倍高速であり、最先端のニューラル暗黙法に匹敵する精度を実現していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T16:50:19Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - Synthetic Wave-Geometric Impulse Responses for Improved Speech
Dereverberation [69.1351513309953]
室内インパルス応答 (RIR) の低周波成分を正確にシミュレートすることが, 良好な脱ヴァーベレーションを実現する上で重要であることを示す。
本研究では, ハイブリッド合成RIRで訓練された音声残響モデルが, 従来の幾何線トレーシング法により学習されたRIRで訓練されたモデルよりも優れていたことを示す。
論文 参考訳(メタデータ) (2022-12-10T20:15:23Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
我々はTransformerベースのMR画像超解像フレームワークを構築するための初期の取り組みを構築した。
我々は、高周波構造とモード間コンテキストを含む2つの領域先行について考察する。
我々は,Cross-modality High- frequency Transformer (Cohf-T)と呼ばれる新しいTransformerアーキテクチャを構築し,低解像度画像の超解像化を実現する。
論文 参考訳(メタデータ) (2022-03-29T07:56:55Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。