Equivalence Checking of Dynamic Quantum Circuits
- URL: http://arxiv.org/abs/2106.01658v1
- Date: Thu, 3 Jun 2021 08:03:22 GMT
- Title: Equivalence Checking of Dynamic Quantum Circuits
- Authors: Xin Hong, Yuan Feng, Sanjiang Li, Mingsheng Ying
- Abstract summary: State-of-the-art quantum devices still contain only a very limited number of qubits.
One possible way to execute more realistic algorithms in near-term quantum devices is to employ dynamic quantum circuits.
This technique can help to significantly reduce the resources required to achieve a given accuracy of a quantum algorithm.
- Score: 7.835264621634824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the rapid development of quantum computing these years,
state-of-the-art quantum devices still contain only a very limited number of
qubits. One possible way to execute more realistic algorithms in near-term
quantum devices is to employ dynamic quantum circuits, in which measurements
can happen during the circuit and their outcomes are used to control other
parts of the circuit. This technique can help to significantly reduce the
resources required to achieve a given accuracy of a quantum algorithm. However,
since this type of quantum circuits are more flexible, their verification is
much more challenging. In this paper, we give a formal definition of dynamic
quantum circuits and then propose to characterise their functionality in terms
of ensembles of linear operators. Based on this novel semantics, two dynamic
quantum circuits are equivalent if they have the same functionality. We further
propose and implement two decision diagram-based algorithms for checking the
equivalence of dynamic quantum circuits. Experiments show that embedding
classical logic into conventional quantum circuits does not incur significant
time and space burden.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Diamond-shaped quantum circuit for real-time quantum dynamics in one
dimension [0.0]
We show that quantum many-body states can be universally represented using a quantum circuit comprising multi-qubit gates.
We also evaluate the efficiency of a quantum circuit constructed with two-qubit gates in quench dynamics for the transverse-field Ising model.
Our results reveal that a diamond-shaped quantum circuit, designed to approximate the multi-qubit gate-based quantum circuit, remarkably excels in accurately representing the long-time dynamics of the system.
arXiv Detail & Related papers (2023-11-10T07:07:54Z) - Dynamic quantum circuit compilation [11.550577505893367]
Recent advancements in quantum hardware have introduced mid-circuit measurements and resets, enabling the reuse of measured qubits.
We present a systematic study of dynamic quantum circuit compilation, a process that transforms static quantum circuits into their dynamic equivalents.
arXiv Detail & Related papers (2023-10-17T06:26:30Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Handling Non-Unitaries in Quantum Circuit Equivalence Checking [4.265279817927261]
Quantum computers are reaching a level where interactions between classical and quantum computations can happen in real-time.
This marks the advent of a new, broader class of quantum circuits: dynamic quantum circuits.
They offer a broader range of available computing primitives that lead to new challenges for design tasks such as simulation, compilation, and verification.
arXiv Detail & Related papers (2021-06-02T12:04:56Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.