論文の概要: Bayesian Inference for Gamma Models
- arxiv url: http://arxiv.org/abs/2106.01906v1
- Date: Thu, 3 Jun 2021 14:58:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 19:07:17.729264
- Title: Bayesian Inference for Gamma Models
- Title(参考訳): ガンマモデルに対するベイズ推定
- Authors: Jingyu He, Nicholas Polson, Jianeng Xu
- Abstract要約: 正規分散平均混合の理論を用いて、ガンマ関数を含むモデルに対するデータ拡張スキームを導出する。
本稿では, ガンマ形状推定, 負二項回帰, ディリクレ割り当てなど, 多数の例について考察する。
- 参考スコア(独自算出の注目度): 4.189643331553922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use the theory of normal variance-mean mixtures to derive a data
augmentation scheme for models that include gamma functions. Our methodology
applies to many situations in statistics and machine learning, including
Multinomial-Dirichlet distributions, Negative binomial regression,
Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All
of those models include a gamma function which does not admit a natural
conjugate prior distribution providing a significant challenge to inference and
prediction. To provide a data augmentation strategy, we construct and develop
the theory of the class of Exponential Reciprocal Gamma distributions. This
allows scalable EM and MCMC algorithms to be developed. We illustrate our
methodology on a number of examples, including gamma shape inference, negative
binomial regression and Dirichlet allocation. Finally, we conclude with
directions for future research.
- Abstract(参考訳): 正規分散平均混合の理論を用いて、ガンマ関数を含むモデルに対するデータ拡張スキームを導出する。
本手法は,多項二項分布,負の二項回帰,ポアソン・ガンマ階層モデル,極値モデルなど,統計学や機械学習の多くの状況に適用できる。
これらのモデルはすべて、自然共役事前分布を認めないガンマ関数を含み、推論と予測に重大な課題を与える。
データ拡張戦略を提供するため、指数逆ガンマ分布のクラスの理論を構築し、開発する。
これにより、スケーラブルなEMとMCMCアルゴリズムを開発できる。
我々は,ガンマ形状推定,負の2項回帰,ディリクレ割当など,いくつかの例で方法論を説明する。
最後に,今後の研究の方向性について述べる。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - Deep Generative Modeling on Limited Data with Regularization by
Nontransferable Pre-trained Models [32.52492468276371]
本稿では,限られたデータを用いた生成モデルの分散を低減するために,正規化深層生成モデル(Reg-DGM)を提案する。
Reg-DGMは、ある発散の重み付け和とエネルギー関数の期待を最適化するために、事前訓練されたモデルを使用する。
実験的に、様々な事前訓練された特徴抽出器とデータ依存エネルギー関数により、Reg-DGMはデータ制限のある強力なDGMの生成性能を一貫して改善する。
論文 参考訳(メタデータ) (2022-08-30T10:28:50Z) - A Graphical Model for Fusing Diverse Microbiome Data [2.385985842958366]
本稿では,このような数値データを共同でモデル化するフレキシブルな多項ガウス生成モデルを提案する。
本稿では、潜在変数とモデルのパラメータを推定するための、計算にスケーラブルな変動予測-最大化(EM)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-21T17:54:39Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - Riemannian Score-Based Generative Modeling [56.20669989459281]
経験的性能を示すスコアベース生成モデル(SGM)を紹介する。
現在のSGMは、そのデータが平坦な幾何学を持つユークリッド多様体上で支えられているという前提を定めている。
これにより、ロボット工学、地球科学、タンパク質モデリングの応用にこれらのモデルを使用することができない。
論文 参考訳(メタデータ) (2022-02-06T11:57:39Z) - Latent Gaussian Model Boosting [0.0]
ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
論文 参考訳(メタデータ) (2021-05-19T07:36:30Z) - A Class of Conjugate Priors for Multinomial Probit Models which Includes
the Multivariate Normal One [0.3553493344868413]
統一スキュー正規分布(SUN)のクラス全体は、複数の多重項プロビットモデルに共役していることを示す。
後部推論と分類のための最先端の解法を改善する。
論文 参考訳(メタデータ) (2020-07-14T10:08:23Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Review of Probability Distributions for Modeling Count Data [0.0]
一般化線形モデルは回帰文脈におけるカウントの直接モデリングを可能にする。
カウントが相対情報のみを含む場合、マルチノミアルまたはディリクレ・マルチノミカルモデルの方が適切である。
論文 参考訳(メタデータ) (2020-01-10T18:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。