Improving healthcare access management by predicting patient no-show
behaviour
- URL: http://arxiv.org/abs/2012.05724v1
- Date: Thu, 10 Dec 2020 14:57:25 GMT
- Title: Improving healthcare access management by predicting patient no-show
behaviour
- Authors: David Barrera Ferro, Sally Brailsford, Cristi\'an Bravo, Honora Smith
- Abstract summary: This work develops a Decision Support System (DSS) to support the implementation of strategies to encourage attendance.
We assess the effectiveness of different machine learning approaches to improve the accuracy of regression models.
In addition to quantifying relationships reported in previous studies, we find that income and neighbourhood crime statistics affect no-show probabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Low attendance levels in medical appointments have been associated with poor
health outcomes and efficiency problems for service providers. To address this
problem, healthcare managers could aim at improving attendance levels or
minimizing the operational impact of no-shows by adapting resource allocation
policies. However, given the uncertainty of patient behaviour, generating
relevant information regarding no-show probabilities could support the
decision-making process for both approaches. In this context many researchers
have used multiple regression models to identify patient and appointment
characteristics than can be used as good predictors for no-show probabilities.
This work develops a Decision Support System (DSS) to support the
implementation of strategies to encourage attendance, for a preventive care
program targeted at underserved communities in Bogot\'a, Colombia. Our
contribution to literature is threefold. Firstly, we assess the effectiveness
of different machine learning approaches to improve the accuracy of regression
models. In particular, Random Forest and Neural Networks are used to model the
problem accounting for non-linearity and variable interactions. Secondly, we
propose a novel use of Layer-wise Relevance Propagation in order to improve the
explainability of neural network predictions and obtain insights from the
modelling step. Thirdly, we identify variables explaining no-show probabilities
in a developing context and study its policy implications and potential for
improving healthcare access. In addition to quantifying relationships reported
in previous studies, we find that income and neighbourhood crime statistics
affect no-show probabilities. Our results will support patient prioritization
in a pilot behavioural intervention and will inform appointment planning
decisions.
Related papers
- A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis [3.5280004326441365]
PatWay-Net is an ML framework designed for interpretable predictions of admission to the intensive care unit for patients with sepsis.
We propose a novel type of recurrent neural network and combine it with multi-layer perceptrons to process the patient pathways.
We demonstrate its utility through a comprehensive dashboard that visualizes patient health trajectories, predictive outcomes, and associated risks.
arXiv Detail & Related papers (2024-05-21T20:31:42Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - Predictive and Prescriptive Analytics for Multi-Site Modeling of Frail
and Elderly Patient Services [0.0]
The aim of this research is to assess how various predictive and prescriptive analytical methods contribute to addressing the operational challenges within an area of healthcare that is growing in demand.
On the prescriptive side, deterministic and two-stage programs are developed to determine how to optimally plan for beds and ward staff.
Our research reveals that healthcare managers should consider using predictive and prescriptive models to make more informed decisions.
arXiv Detail & Related papers (2023-11-13T12:25:45Z) - Policy Optimization for Personalized Interventions in Behavioral Health [8.10897203067601]
Behavioral health interventions, delivered through digital platforms, have the potential to significantly improve health outcomes.
We study the problem of optimizing personalized interventions for patients to maximize a long-term outcome.
We present a new approach for this problem that we dub DecompPI, which decomposes the state space for a system of patients to the individual level.
arXiv Detail & Related papers (2023-03-21T21:42:03Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
We propose a joint model of intervention policy and adverse event risk as a means to explicitly communicate the model's assumptions about future interventions.
We show how combining typical risk scores, such as the likelihood of mortality, with future intervention probability scores leads to more interpretable clinical predictions.
arXiv Detail & Related papers (2022-07-06T19:49:42Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Using Deep Learning and Explainable Artificial Intelligence in Patients'
Choices of Hospital Levels [10.985001960872264]
This study used nationwide insurance data, accumulated possible features discussed in existing literature, and used a deep neural network to predict the patients choices of hospital levels.
The results showed that the model was able to predict with high area under the receiver operating characteristics curve (AUC) (0.90), accuracy (0.90), sensitivity (0.94), and specificity (0.97) with highly imbalanced label.
arXiv Detail & Related papers (2020-06-24T02:15:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.