論文の概要: Data-driven discovery of interacting particle systems using Gaussian
processes
- arxiv url: http://arxiv.org/abs/2106.02735v1
- Date: Fri, 4 Jun 2021 22:00:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 12:03:32.451816
- Title: Data-driven discovery of interacting particle systems using Gaussian
processes
- Title(参考訳): ガウス過程を用いた相互作用粒子系のデータ駆動発見
- Authors: Jinchao Feng, Yunxiang Ren, Sui Tang
- Abstract要約: 本研究では,2次相互作用粒子系における距離に基づく相互作用則の発見について検討する。
本稿では,潜在相互作用カーネル関数をガウス過程としてモデル化する学習手法を提案する。
異なる集団行動を示すシステムにおける数値的な結果から,ノイズの少ない軌道データから,我々のアプローチを効果的に学習することを示す。
- 参考スコア(独自算出の注目度): 3.0938904602244346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interacting particle or agent systems that display a rich variety of
collection motions are ubiquitous in science and engineering. A fundamental and
challenging goal is to understand the link between individual interaction rules
and collective behaviors. In this paper, we study the data-driven discovery of
distance-based interaction laws in second-order interacting particle systems.
We propose a learning approach that models the latent interaction kernel
functions as Gaussian processes, which can simultaneously fulfill two inference
goals: one is the nonparametric inference of interaction kernel function with
the pointwise uncertainty quantification, and the other one is the inference of
unknown parameters in the non-collective forces of the system. We formulate
learning interaction kernel functions as a statistical inverse problem and
provide a detailed analysis of recoverability conditions, establishing that a
coercivity condition is sufficient for recoverability. We provide a
finite-sample analysis, showing that our posterior mean estimator converges at
an optimal rate equal to the one in the classical 1-dimensional Kernel Ridge
regression. Numerical results on systems that exhibit different collective
behaviors demonstrate efficient learning of our approach from scarce noisy
trajectory data.
- Abstract(参考訳): 相互作用する粒子やエージェントシステムは、科学や工学において、多種多様な収集運動を示す。
基本的かつ困難な目標は、個々の相互作用ルールと集団行動の関係を理解することである。
本稿では,2次相互作用粒子系における距離に基づく相互作用則の探索について述べる。
本稿では,潜在相互作用カーネル関数をガウス過程としてモデル化する学習手法を提案する。1つは相互作用カーネル関数の非パラメトリック推論とポイントワイド不確実性定量化,もう1つはシステムの非衝突力における未知パラメータの推論である。
本研究では, 学習相互作用核関数を統計的逆問題として定式化し, 回復条件の詳細な解析を行い, 保磁力条件が回復可能性に十分であることを示す。
有限サンプル解析を行い、後方平均推定器が古典的な1次元ケルネルリッジ回帰のものと等しい最適な速度で収束することを示した。
異なる集団行動を示すシステムの数値結果から, ノイズの少ない軌道データからのアプローチの効率的な学習が示されている。
関連論文リスト
- Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
このような相互作用を発見する代替手法として、ニューラル・インタラクション・推論(NIIP)を提案する。
NIIPは観測された関係制約を尊重する軌道のサブセットに低エネルギーを割り当てる。
別々に訓練されたモデル間での相互作用の型を交換するなどの軌道操作や、軌道予測を可能にする。
論文 参考訳(メタデータ) (2023-10-23T00:44:17Z) - Collective Relational Inference for learning heterogeneous interactions [8.215734914005845]
本稿では,従来の手法と比較して2つの特徴を持つ関係推論の確率的手法を提案する。
提案手法を複数のベンチマークデータセットで評価し,既存の手法よりも精度良く対話型を推定できることを実証した。
全体として、提案モデルはデータ効率が高く、より小さなシステムで訓練された場合、大規模システムに対して一般化可能である。
論文 参考訳(メタデータ) (2023-04-30T19:45:04Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
エージェントの経路のノイズ観測から直接相互作用力のデータに基づく近似を構築することの問題点を考察する。
学習された相互作用カーネルは、長い時間間隔でエージェントの振る舞いを予測するために使用される。
さらに,カーネル評価コストを削減し,マルチエージェントシステムのシミュレーションコストを大幅に削減する。
論文 参考訳(メタデータ) (2022-12-11T20:09:36Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
本稿では,エージェントの軌道に沿った状態や速度の観測を前提として,相互作用カーネルが依存する変数と相互作用カーネル自体を両立させる学習手法を提案する。
これにより、高次元観測データから次元性の呪いを避ける効果的な次元削減が得られる。
我々は,本手法の学習能力を,様々な一階対話システムに示す。
論文 参考訳(メタデータ) (2022-08-04T16:31:01Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
本研究では,対話対象の連続時間力学の不確実性を考慮したモデリングを初めて行った。
我々のモデルは、独立力学と信頼性のある不確実性推定との相互作用の両方を推測する。
論文 参考訳(メタデータ) (2022-05-24T08:36:25Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Learning Theory for Inferring Interaction Kernels in Second-Order
Interacting Agent Systems [17.623937769189364]
推定器の強い一貫性と最適非パラメトリック min-max 収束率を確立する完全学習理論を開発する。
推定器を構築するための数値アルゴリズムは並列化可能であり、高次元問題に対してよく機能し、複雑な力学系上で実証される。
論文 参考訳(メタデータ) (2020-10-08T02:07:53Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
多視点問題は潜在変数モデルに直面することができる。
高次元問題と非線形問題は伝統的にカーネルメソッドによって扱われる。
両アプローチを単一モデルにマージすることを提案する。
論文 参考訳(メタデータ) (2020-06-01T14:25:38Z) - End-to-End Models for the Analysis of System 1 and System 2 Interactions
based on Eye-Tracking Data [99.00520068425759]
本稿では,よく知られたStroopテストの視覚的修正版において,様々なタスクと潜在的な競合事象を特定するための計算手法を提案する。
統計的分析により、選択された変数は、異なるシナリオにおける注意負荷の変動を特徴付けることができることが示された。
機械学習技術は,異なるタスクを分類精度良く区別できることを示す。
論文 参考訳(メタデータ) (2020-02-03T17:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。