論文の概要: Topological Measurement of Deep Neural Networks Using Persistent
Homology
- arxiv url: http://arxiv.org/abs/2106.03016v1
- Date: Sun, 6 Jun 2021 03:06:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:39:51.195794
- Title: Topological Measurement of Deep Neural Networks Using Persistent
Homology
- Title(参考訳): Persistent Homology を用いた深部ニューラルネットワークの位相計測
- Authors: Satoru Watanabe, Hayato Yamana
- Abstract要約: ディープニューラルネットワーク(DNN)の内部表現は解読不能である。
持続的ホモロジー(PH)は、訓練されたDNNの複雑さを調べるために用いられた。
- 参考スコア(独自算出の注目度): 0.7919213739992464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inner representation of deep neural networks (DNNs) is indecipherable,
which makes it difficult to tune DNN models, control their training process,
and interpret their outputs. In this paper, we propose a novel approach to
investigate the inner representation of DNNs through topological data analysis
(TDA). Persistent homology (PH), one of the outstanding methods in TDA, was
employed for investigating the complexities of trained DNNs. We constructed
clique complexes on trained DNNs and calculated the one-dimensional PH of DNNs.
The PH reveals the combinational effects of multiple neurons in DNNs at
different resolutions, which is difficult to be captured without using PH.
Evaluations were conducted using fully connected networks (FCNs) and networks
combining FCNs and convolutional neural networks (CNNs) trained on the MNIST
and CIFAR-10 data sets. Evaluation results demonstrate that the PH of DNNs
reflects both the excess of neurons and problem difficulty, making PH one of
the prominent methods for investigating the inner representation of DNNs.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の内部表現は解読不可能であり、DNNモデルのチューニングやトレーニングプロセスの制御、出力の解釈が困難になる。
本稿では,DNNの内部表現をトポロジカルデータ解析(TDA)を用いて研究する手法を提案する。
TDAにおける優れた手法の一つである持続ホモロジー(PH)は、訓練されたDNNの複雑さを調べるために採用された。
トレーニングDNN上に斜交錯体を構築し,DNNの1次元PHを計算した。
phは異なる解像度でdnnの複数のニューロンの組み合わせ効果を示し、phを使わずに捕獲することは困難である。
MNISTとCIFAR-10データセットに基づいて、FCNと畳み込みニューラルネットワーク(CNN)を組み合わせた完全接続ネットワーク(FCN)とネットワークを用いて評価を行った。
評価の結果、DNNのPHは神経細胞の過剰と問題難易度の両方を反映しており、DNNの内部表現を調査するための重要な方法の1つとなっている。
関連論文リスト
- Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Learning Ability of Interpolating Deep Convolutional Neural Networks [28.437011792990347]
我々は,深層ニューラルネットワーク,深層畳み込みニューラルネットワーク(DCNN)の重要なファミリーの学習能力について検討する。
非補間DCNNに適切に定義された層を追加することで、非補間DCNNの良好な学習率を維持する補間DCNNが得られることを示す。
我々の研究は、過度に適合したDCNNの一般化の理論的検証を提供する。
論文 参考訳(メタデータ) (2022-10-25T17:22:31Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Deep Learning in Spiking Phasor Neural Networks [0.6767885381740952]
スパイキングニューラルネットワーク(SNN)は、低レイテンシで低消費電力のニューロモルフィックハードウェアで使用するために、ディープラーニングコミュニティの注目を集めている。
本稿では,Spking Phasor Neural Networks(SPNN)を紹介する。
SPNNは複雑に評価されたディープニューラルネットワーク(DNN)に基づいており、スパイク時間による位相を表す。
論文 参考訳(メタデータ) (2022-04-01T15:06:15Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - NINNs: Nudging Induced Neural Networks [0.0]
ディープニューラルネットワーク(DNN)の精度を制御・改善するためのヌーディング誘導ニューラルネットワーク(NINN)と呼ばれる新しいアルゴリズム
NINNは、ネットワークの前方伝播にフィードバック制御項を追加することで機能する。
NINNに対して厳密な収束解析が確立されている。
論文 参考訳(メタデータ) (2022-03-15T14:29:26Z) - Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix [0.0]
分類性能を向上させるため,DNNのトレーニングと構造を変更した。
畳み込みニューラルネットワーク(CNN)の最後の層に続く最小距離ネットワーク(MDN)が分類器として使用される。
異なる領域では、ノード数が少ないDivFEを使用することでより高い分類性能が得られたことが観察されている。
論文 参考訳(メタデータ) (2021-03-31T18:06:11Z) - Spiking Neural Networks with Single-Spike Temporal-Coded Neurons for
Network Intrusion Detection [6.980076213134383]
スパイキングニューラルネット(SNN)は、その強い生物楽観性と高いエネルギー効率のために興味深い。
しかし、その性能は従来のディープニューラルネットワーク(DNN)よりもはるかに遅れている。
論文 参考訳(メタデータ) (2020-10-15T14:46:18Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
ディープニューラルネットワーク(DNN)の内部動作を説明するために,ニューラルアーキテクチャ・ディコンタングルメント(NAD)を導入する。
NADは、訓練済みのDNNを独立したタスクに従ってサブアーキテクチャに切り離すことを学び、推論プロセスを記述する情報フローを形成する。
その結果、誤分類された画像は、タスクサブアーキテクチャーに正しいサブアーキテクチャーに割り当てられる確率が高いことが示された。
論文 参考訳(メタデータ) (2020-03-30T08:34:33Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。