論文の概要: Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues
- arxiv url: http://arxiv.org/abs/2106.03065v1
- Date: Sun, 6 Jun 2021 09:03:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-13 20:32:07.557118
- Title: Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues
- Title(参考訳): セマンティクスエンハンスド説明可能なオープンドメイン対話の微調整
- Authors: Chen Henry Wu, Yinhe Zheng, Yida Wang, Zhenyu Yang, Minlie Huang
- Abstract要約: 本稿では,事前訓練された言語モデルとオープンドメイン対話モデルのためのモジュール型対話パラダイムを組み合わせることを提案する。
セマンティック・エンハンスド・ファインタニング(セマンティック・エンハンスド・ファインタニング)は,言語モデルファインタニングタスクとして会話理解,計画,応答生成をインスタンス化する。
- 参考スコア(独自算出の注目度): 33.50099424582726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose to combine pretrained language models with the
modular dialogue paradigm for open-domain dialogue modeling. Our method,
semantic-enhanced finetuning, instantiates conversation understanding,
planning, and response generation as a language model finetuning task. At
inference, we disentangle semantic and token variations by specifying sampling
methods and constraints for each module separately. For training and
evaluation, we present X-Weibo, a Chinese multi-turn open-domain dialogue
dataset with automatic annotation for emotions, DAs, and topical words.
Experiments show that semantic-enhanced finetuning outperforms strong baselines
on non-semantic and semantic metrics, improves the human-evaluated relevance,
coherence, and informativeness, and exhibits considerable controllability over
semantic variables.
- Abstract(参考訳): 本稿では,事前学習された言語モデルとモジュール型対話パラダイムを組み合わせたオープンドメイン対話モデルを提案する。
本手法は,言語モデルの微調整タスクとして,会話理解,計画,応答生成をインスタンス化する。
推論において、各モジュールのサンプリングメソッドと制約を別々に指定することで、意味とトークンのバリエーションを分離する。
トレーニングと評価のために,感情,DA,話題語の自動アノテーションを備えた中国語マルチターンオープンドメイン対話データセットであるX-Weiboを提案する。
実験により、セマンティックエンハンスされた微調整は、非セマンティクスおよびセマンティクスメトリクスの強いベースラインを上回り、人間評価の妥当性、コヒーレンス、インフォメーション性を改善し、セマンティクス変数よりも相当な制御可能性を示すことが示されている。
関連論文リスト
- Paralinguistics-Enhanced Large Language Modeling of Spoken Dialogue [71.15186328127409]
パラリンGPT(Paralin GPT)
モデルは、シリアライズされたマルチタスクフレームワーク内の入力プロンプトとして、テキスト、音声埋め込み、およびパラ言語属性の会話コンテキストを取る。
音声対話データセットとして,感情ラベルをパラ言語属性として含むSwitchboard-1コーパスを利用する。
論文 参考訳(メタデータ) (2023-12-23T18:14:56Z) - 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - Evaluating Open-Domain Dialogues in Latent Space with Next Sentence
Prediction and Mutual Information [18.859159491548006]
オープンドメイン対話のための新しい学習ベース自動評価指標(CMN)を提案する。
条件付き変分オートエンコーダ(CVAE)をNext Sentence Prediction(NSP)の対象とし,相互情報(MI)を用いて潜在空間におけるテキストの意味的類似性をモデル化する。
2つのオープンドメイン対話データセットの実験結果は、幅広いベースラインと比較して、我々の手法の優位性を示している。
論文 参考訳(メタデータ) (2023-05-26T14:21:54Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
我々は、多人数対話の会話構造、すなわち、各発話が応答する相手を理解するモデルを事前訓練する。
ラベル付きデータを完全に活用するために,談話構造を潜在変数として扱い,それらを共同で推論し,談話認識モデルを事前学習することを提案する。
論文 参考訳(メタデータ) (2023-05-24T14:06:27Z) - Controllable Mixed-Initiative Dialogue Generation through Prompting [50.03458333265885]
混合開始対話タスクには、情報の繰り返し交換と会話制御が含まれる。
エージェントは、ポリシープランナーが定める特定の対話意図や戦略に従う応答を生成することにより、コントロールを得る。
標準的なアプローチは、これらの意図に基づいて生成条件を実行するために、訓練済みの言語モデルを微調整している。
代わりに、条件生成の微調整に代えて、大きな言語モデルをドロップインで置き換えるように促します。
論文 参考訳(メタデータ) (2023-05-06T23:11:25Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
本稿では,DSTC-10の音声対話課題における知識ベースタスク指向対話モデリングのための一般化モデルの構築について述べる。
我々は,人工誤り注入やラウンドトリップ音声変換など,手書きデータに対する広範なデータ拡張戦略を採用している。
本手法は, 客観的評価では3位, 最終公式評価では2位である。
論文 参考訳(メタデータ) (2022-03-08T12:26:57Z) - Towards Transparent Interactive Semantic Parsing via Step-by-Step
Correction [17.000283696243564]
自然言語における予測論理形式を段階的に説明する対話型意味解析フレームワークについて検討する。
フレームワークのインスタンス化として,知識ベース(KBQA)に対する質問応答に注目した。
実験の結果,人間のフィードバックによる対話型フレームワークは,全体の解析精度を大幅に向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2021-10-15T20:11:22Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
マルチパーティ会話は、対話的なターン間のセマンティックレベルの相関によって暗黙的に組織される。
対話談話分析は,基本談話単位間の係り受け構造と関係の予測に応用できる。
対話談話アノテーションを持つ既存のコーパスは、限られたサンプルサイズを持つ特定のドメインから収集される。
論文 参考訳(メタデータ) (2021-10-09T09:36:22Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
論文 参考訳(メタデータ) (2020-12-24T18:47:49Z) - An Empirical Investigation of Pre-Trained Transformer Language Models
for Open-Domain Dialogue Generation [23.343006562849126]
本稿では,オープンドメイン対話生成作業のための事前学習型トランスフォーマーに基づく自動回帰言語モデルについて実験的に検討する。
事前訓練と微調整の訓練パラダイムは、学習を行うために使用される。
実験は、Weibo、Douban、Reddit、DailyDialog、Persona-Chatといった典型的なシングルターンとマルチターンの対話コーパスで行われる。
論文 参考訳(メタデータ) (2020-03-09T15:20:21Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
本研究では,この手法を,ゴール指向対話のための対話状態追跡タスクに拡張する。
目的指向ダイアログの完全な側面をモデル化するための変分階層型ダイアログオートエンコーダ(VHDA)を提案する。
各種ダイアログデータセットを用いた実験により、生成データ拡張による下流ダイアログトラッカーのロバスト性の向上が示された。
論文 参考訳(メタデータ) (2020-01-23T15:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。