論文の概要: Towards Transparent Interactive Semantic Parsing via Step-by-Step
Correction
- arxiv url: http://arxiv.org/abs/2110.08345v1
- Date: Fri, 15 Oct 2021 20:11:22 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-22 00:41:32.662083
- Title: Towards Transparent Interactive Semantic Parsing via Step-by-Step
Correction
- Title(参考訳): ステップバイステップ補正による透過的対話的意味解析に向けて
- Authors: Lingbo Mo, Ashley Lewis, Huan Sun, Michael White
- Abstract要約: 自然言語における予測論理形式を段階的に説明する対話型意味解析フレームワークについて検討する。
フレームワークのインスタンス化として,知識ベース(KBQA)に対する質問応答に注目した。
実験の結果,人間のフィードバックによる対話型フレームワークは,全体の解析精度を大幅に向上させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 17.000283696243564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing studies on semantic parsing focus primarily on mapping a
natural-language utterance to a corresponding logical form in one turn.
However, because natural language can contain a great deal of ambiguity and
variability, this is a difficult challenge. In this work, we investigate an
interactive semantic parsing framework that explains the predicted logical form
step by step in natural language and enables the user to make corrections
through natural-language feedback for individual steps. We focus on question
answering over knowledge bases (KBQA) as an instantiation of our framework,
aiming to increase the transparency of the parsing process and help the user
appropriately trust the final answer. To do so, we construct INSPIRED, a
crowdsourced dialogue dataset derived from the ComplexWebQuestions dataset. Our
experiments show that the interactive framework with human feedback has the
potential to greatly improve overall parse accuracy. Furthermore, we develop a
pipeline for dialogue simulation to evaluate our framework w.r.t. a variety of
state-of-the-art KBQA models without involving further crowdsourcing effort.
The results demonstrate that our interactive semantic parsing framework
promises to be effective across such models.
- Abstract(参考訳): セマンティックパーシングに関する既存の研究は、主に自然言語の発話を1ターンで対応する論理形式にマッピングすることに焦点を当てている。
しかし、自然言語には曖昧さと可変性が多く含まれているため、これは難しい課題である。
本研究では,自然言語のステップごとに予測された論理形式を記述し,各ステップの自然言語フィードバックによる修正を可能にする対話型意味解析フレームワークについて検討する。
我々は,知識ベース(KBQA)に対する質問応答をフレームワークのインスタンス化として重視し,解析プロセスの透明性を高め,ユーザが最終回答を適切に信頼することを目的とした。
そこで我々は,複合WebQuestionsデータセットからクラウドソーシングされた対話データセットであるINSPIREDを構築した。
実験の結果,人間のフィードバックによる対話型フレームワークは,全体の解析精度を大幅に向上させる可能性が示唆された。
さらに,さらなるクラウドソーシングを伴わずに,さまざまな最先端KBQAモデルを評価するための対話シミュレーション用パイプラインを開発した。
その結果、対話型セマンティックパーシングフレームワークは、そのようなモデルに対して効果的であることを示す。
関連論文リスト
- Addressing the Blind Spots in Spoken Language Processing [4.626189039960495]
人間のコミュニケーションを理解するには、非言語的要素を含むために、テキスト語や音声語を超越した、より包括的なアプローチが必要である、と我々は主張する。
本稿では,これらの非言語的手がかりをテキスト形式で書き起こす汎用的な自動ジェスチャーセグメンテーションと書き起こしモデルの開発を提案する。
論文 参考訳(メタデータ) (2023-09-06T10:29:25Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - The Whole Truth and Nothing But the Truth: Faithful and Controllable
Dialogue Response Generation with Dataflow Transduction and Constrained
Decoding [65.34601470417967]
本稿では,ニューラルネットワークモデリングとルールベース生成の強みを組み合わせた対話応答生成のためのハイブリッドアーキテクチャについて述べる。
本実験により, 本システムは, 流布性, 妥当性, 真理性の評価において, ルールベースおよび学習的アプローチの両方に優れることがわかった。
論文 参考訳(メタデータ) (2022-09-16T09:00:49Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
本稿では,対話要約モデルを訓練するための欠点を補う自己教師型手法を提案する。
我々の原理は,対話文表現の文脈化能力を高めるために,前文対話文を用いて不整合情報の流れを検出することである。
論文 参考訳(メタデータ) (2022-09-01T07:51:46Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
会話における感情認識(英: emotion recognition in conversation、ERC)とは、2つ以上の発話を含む会話に焦点を当てた感情認識のサブフィールドである。
我々は,宣言的テンプレート言語である確率的ソフト論理(PSL)にアプローチを実装した。
PSLは、ニューラルモデルからPSLモデルへの結果の取り込みのための機能を提供する。
提案手法を最先端の純粋ニューラルネットワークERCシステムと比較した結果,約20%の改善が得られた。
論文 参考訳(メタデータ) (2022-07-14T23:59:06Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
マルチパーティ会話は、対話的なターン間のセマンティックレベルの相関によって暗黙的に組織される。
対話談話分析は,基本談話単位間の係り受け構造と関係の予測に応用できる。
対話談話アノテーションを持つ既存のコーパスは、限られたサンプルサイズを持つ特定のドメインから収集される。
論文 参考訳(メタデータ) (2021-10-09T09:36:22Z) - Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues [33.50099424582726]
本稿では,事前訓練された言語モデルとオープンドメイン対話モデルのためのモジュール型対話パラダイムを組み合わせることを提案する。
セマンティック・エンハンスド・ファインタニング(セマンティック・エンハンスド・ファインタニング)は,言語モデルファインタニングタスクとして会話理解,計画,応答生成をインスタンス化する。
論文 参考訳(メタデータ) (2021-06-06T09:03:41Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
ドメイン間コンテキスト依存のセマンティック解析は研究の新たな焦点である。
本稿では,コンテキストの発話,トークン,データベーススキーマ,会話の進行に伴う複雑なインタラクションを効果的にモデル化する動的グラフフレームワークを提案する。
提案したフレームワークは既存のモデルを大きなマージンで上回り、2つの大規模ベンチマークで新しい最先端性能を達成する。
論文 参考訳(メタデータ) (2021-01-05T18:11:29Z) - I like fish, especially dolphins: Addressing Contradictions in Dialogue
Modeling [104.09033240889106]
DialoguE Contradiction Detection Task(DECODE)と、人間とロボットの矛盾した対話の両方を含む新しい会話データセットを紹介します。
次に、事前学習したトランスフォーマーモデルを用いて、定型的非構造的アプローチと矛盾検出を行う構造的発話に基づくアプローチを比較する。
論文 参考訳(メタデータ) (2020-12-24T18:47:49Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。