論文の概要: A Distance Covariance-based Kernel for Nonlinear Causal Clustering in
Heterogeneous Populations
- arxiv url: http://arxiv.org/abs/2106.03480v1
- Date: Mon, 7 Jun 2021 10:16:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:32:27.746904
- Title: A Distance Covariance-based Kernel for Nonlinear Causal Clustering in
Heterogeneous Populations
- Title(参考訳): 不均質集団における非線形因果クラスタリングのための距離共分散型カーネル
- Authors: Alex Markham and Moritz Grosse-Wentrup
- Abstract要約: 本稿では,異なるサンプルの非線形因果構造間の類似性を測定するために,距離共分散に基づくカーネルを提案する。
このカーネルはクラスタリングを行い、同種サブポピュレーションを識別する。
遺伝子学の応用による因果的クラスタリングにカーネルを用いることで、測定された遺伝子発現レベルを調節する潜伏転写因子ネットワークを解明することができる。
- 参考スコア(独自算出の注目度): 1.2763567932588586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of causal structure learning in the setting of
heterogeneous populations, i.e., populations in which a single causal structure
does not adequately represent all population members, as is common in
biological and social sciences. To this end, we introduce a distance
covariance-based kernel designed specifically to measure the similarity between
the underlying nonlinear causal structures of different samples. This kernel
enables us to perform clustering to identify the homogeneous subpopulations.
Indeed, we prove the corresponding feature map is a statistically consistent
estimator of nonlinear independence structure, rendering the kernel itself a
statistical test for the hypothesis that sets of samples come from different
generating causal structures. We can then use existing methods to learn a
causal structure for each of these subpopulations. We demonstrate using our
kernel for causal clustering with an application in genetics, allowing us to
reason about the latent transcription factor networks regulating measured gene
expression levels.
- Abstract(参考訳): 本研究は, 生物・社会科学において一般的であるように, 単一因果構造がすべての集団を適切に表現していない不均質集団の設定における因果構造学習の問題を考える。
この目的のために, 異なる試料の非線形因果構造間の類似性を測定するために, 距離共分散に基づくカーネルを提案する。
このカーネルはクラスタリングを行い、同種サブポピュレーションを識別する。
実際、対応する特徴写像が非線形独立構造の統計的に一貫性のある推定子であることを証明し、カーネル自体が異なる生成因果構造からサンプルの集合が来るという仮説の統計的テストとなる。
既存の手法を使って各サブ集団の因果構造を学習することができる。
遺伝子学の応用による因果的クラスタリングにカーネルを用いることで、測定された遺伝子発現レベルを調節する潜在転写因子ネットワークを解明することができる。
関連論文リスト
- Causal K-Means Clustering [5.087519744951637]
Causal k-Means Clusteringは、広く使われているk-means Clusteringアルゴリズムを利用して、未知の部分群構造を明らかにする。
既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
提案手法は,複数の治療レベルを有する近代的な結果研究に特に有用である。
論文 参考訳(メタデータ) (2024-05-05T23:59:51Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Causal Discovery in Linear Latent Variable Models Subject to Measurement
Error [29.78435955758185]
線形系における測定誤差の存在下での因果発見に着目した。
我々は、この問題と因果発見の驚くべき関連性を、観察されていない親性原因の存在で示している。
論文 参考訳(メタデータ) (2022-11-08T03:43:14Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
クラスタ因果図(略してC-DAG)と呼ばれる新しいタイプのグラフィカルモデルを導入する。
C-DAGは、限定された事前知識に基づいて変数間の関係を部分的に定義することができる。
我々はC-DAGに対する因果推論のための基礎と機械を開発する。
論文 参考訳(メタデータ) (2022-02-22T21:27:31Z) - CCSL: A Causal Structure Learning Method from Multiple Unknown
Environments [32.61349047509467]
非i.d.データからの因果発見のための統一因果クラスタ構造学習法(CCSL)を提案する。
本手法は,(1)同じ因果機構を持つ被験者をクラスタリングすること,(2)被験者のサンプルから因果構造を学習すること,の2つの課題を同時に統合する。
論文 参考訳(メタデータ) (2021-11-18T12:50:53Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
我々は因果発見の課題と観察データに焦点をあてる。
因果構造の特異な識別に必要かつ十分な条件のセットを導出する。
論文 参考訳(メタデータ) (2021-10-30T21:32:42Z) - Blocked Clusterwise Regression [0.0]
我々は、各ユニットが複数の潜伏変数を持つことを可能にすることで、離散的非観測的不均一性に対する以前のアプローチを一般化する。
我々は,クラスタの過剰な数のクラスタリングの理論に寄与し,この設定に対する新たな収束率を導出する。
論文 参考訳(メタデータ) (2020-01-29T23:29:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。