論文の概要: Auction-based and Distributed Optimization Approaches for Scheduling
Observations in Satellite Constellations with Exclusive Orbit Portions
- arxiv url: http://arxiv.org/abs/2106.03548v1
- Date: Fri, 4 Jun 2021 09:34:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:39:35.620336
- Title: Auction-based and Distributed Optimization Approaches for Scheduling
Observations in Satellite Constellations with Exclusive Orbit Portions
- Title(参考訳): 排他的軌道配置を持つ衛星コンステレーションにおけるスケジューリング観測のためのオークションベースおよび分散最適化手法
- Authors: Gauthier Picard
- Abstract要約: 本研究では,複数のユーザと衛星による地球観測シナリオに関する問題に対するマルチエージェント割当手法の適用について検討する。
EOSCSPの解法として,分散制約最適化に基づく市場ベース手法と分散問題解決手法を提案する。
これらのコントリビューションは、実大規模または非常に矛盾する観測順序書に基づいて、ランダムに生成されたEOSCSPインスタンス上で実験的に評価される。
- 参考スコア(独自算出の注目度): 0.45687771576879593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the use of multi-agent allocation techniques on problems
related to Earth observation scenarios with multiple users and satellites. We
focus on the problem of coordinating users having reserved exclusive orbit
portions and one central planner having several requests that may use some
intervals of these exclusives. We define this problem as Earth Observation
Satellite Constellation Scheduling Problem (EOSCSP) and map it to a Mixed
Integer Linear Program. As to solve EOSCSP, we propose market-based techniques
and a distributed problem solving technique based on Distributed Constraint
Optimization (DCOP), where agents cooperate to allocate requests without
sharing their own schedules. These contributions are experimentally evaluated
on randomly generated EOSCSP instances based on real large-scale or highly
conflicting observation order books.
- Abstract(参考訳): 本研究では,複数ユーザと衛星を用いた地球観測シナリオに関する問題に対するマルチエージェント割当手法の利用について検討する。
我々は、予約された専用軌道部分を持つユーザと、いくつかのリクエストを持つ1つの中央プランナーを連携させる問題に焦点を当てる。
我々は、この問題を地球観測衛星群スケジューリング問題(eoscsp)と定義し、混合整数線形プログラムにマップする。
EOSCSPを解決するために,分散制約最適化(DCOP)に基づく市場ベース手法と分散問題解決手法を提案する。
これらのコントリビューションは、実大規模または非常に矛盾する観測順序書に基づいて、ランダムに生成されたEOSCSPインスタンス上で実験的に評価される。
関連論文リスト
- On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making [0.0]
本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOSミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サーベイラを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
論文 参考訳(メタデータ) (2024-09-25T17:40:37Z) - Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications [10.652828373995519]
衛星故障が星座性能と関連するタスク要求に与える影響を批判的に評価する。
本稿では、強化学習(RL)技術、特にQ学習、ポリシーグラディエント、ディープQネットワーク(DQN)、およびPPOを紹介する。
その結果, DQNとPPOは, 平均報酬, タスク完了率, 応答時間で有効な結果が得られることを示した。
論文 参考訳(メタデータ) (2024-09-03T20:01:56Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Heterogeneity: An Open Challenge for Federated On-board Machine Learning [2.519319150166215]
本稿では,フェデレーテッド・ラーニングにおけるクロスプロデューサ・ユース・ケースの文脈における課題の体系的レビューを行う。
このようなアプリケーションは、そのようなシステムの異質性から主に生じるフェデレートラーニングパラダイムに、さらなる課題を提示します。
論文 参考訳(メタデータ) (2024-08-13T13:56:17Z) - Scalable Scheduling Policies for Quantum Satellite Networks [10.91414940065524]
衛星・地上局の資源制約を考慮した量子衛星ネットワークにおける送信スケジューリングの問題点を考察する。
衛星を地上局に割り当てる際の最も一般的な問題はNPハードであることを示す。
そこで我々は,Starlinkメガコンステレーションの4つのスケーラブルアルゴリズムを提案し,その性能評価を行った。
論文 参考訳(メタデータ) (2024-05-15T15:58:12Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
本稿では、ミッション自律のためのソフトウェアフレームワークに組み込まれた、オンボードスケジューラを提案する。
スケジューラは線形整数プログラミングに基づいており、ブランチ・アンド・カット・ソルバの使用に依存している。
この技術は地球観測のシナリオでテストされており、その性能を最先端のスケジューリング技術と比較している。
論文 参考訳(メタデータ) (2022-05-04T12:00:49Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
創発的ランダムアクセスチャネルプロトコル(eRACH)と呼ばれるLEO SATネットワークのための新しい許可なしランダムアクセスソリューションを提案する。
eRACHは、非定常ネットワーク環境との相互作用によって生じるモデルフリーなアプローチである。
RACHと比較して,提案するeRACHは平均ネットワークスループットが54.6%向上することを示す。
論文 参考訳(メタデータ) (2021-12-03T07:44:45Z) - A Maximum Independent Set Method for Scheduling Earth Observing
Satellite Constellations [41.013477422930755]
本稿では,衛星スケジューリング問題の解法として,実現不可能なグラフ表現を生成する手法を提案する。
光衛星のスカイサット星座と、最大24個の衛星のシミュレートされた星座の、要求された最大10,000の撮像位置のシナリオでテストされている。
論文 参考訳(メタデータ) (2020-08-15T19:32:21Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - Agile Earth observation satellite scheduling over 20 years:
formulations, methods and future directions [69.47531199609593]
高度姿勢操作能力を持つアジャイル衛星は、新世代の地球観測衛星(EOS)である
衛星技術の継続的な改善と打ち上げコストの削減により、アジャイルEOS(AEOS)の開発が加速した。
論文 参考訳(メタデータ) (2020-03-13T09:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。