論文の概要: Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications
- arxiv url: http://arxiv.org/abs/2409.02270v1
- Date: Tue, 3 Sep 2024 20:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:14:11.218017
- Title: Reinforcement Learning-enabled Satellite Constellation Reconfiguration and Retasking for Mission-Critical Applications
- Title(参考訳): ミッションクリティカルな応用のための強化学習型衛星コンステレーション再構成とリタスキング
- Authors: Hassan El Alami, Danda B. Rawat,
- Abstract要約: 衛星故障が星座性能と関連するタスク要求に与える影響を批判的に評価する。
本稿では、強化学習(RL)技術、特にQ学習、ポリシーグラディエント、ディープQネットワーク(DQN)、およびPPOを紹介する。
その結果, DQNとPPOは, 平均報酬, タスク完了率, 応答時間で有効な結果が得られることを示した。
- 参考スコア(独自算出の注目度): 10.652828373995519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of satellite constellation applications is rapidly advancing due to increasing user demands, reduced operational costs, and technological advancements. However, a significant gap in the existing literature concerns reconfiguration and retasking issues within satellite constellations, which is the primary focus of our research. In this work, we critically assess the impact of satellite failures on constellation performance and the associated task requirements. To facilitate this analysis, we introduce a system modeling approach for GPS satellite constellations, enabling an investigation into performance dynamics and task distribution strategies, particularly in scenarios where satellite failures occur during mission-critical operations. Additionally, we introduce reinforcement learning (RL) techniques, specifically Q-learning, Policy Gradient, Deep Q-Network (DQN), and Proximal Policy Optimization (PPO), for managing satellite constellations, addressing the challenges posed by reconfiguration and retasking following satellite failures. Our results demonstrate that DQN and PPO achieve effective outcomes in terms of average rewards, task completion rates, and response times.
- Abstract(参考訳): 衛星コンステレーションの開発は、ユーザ需要の増加、運用コストの削減、技術進歩などにより急速に進んでいる。
しかし、既存の文献における大きなギャップは、我々の研究の主焦点である衛星コンステレーション内の再構成と再タスキングの問題である。
本研究では,衛星故障が星座性能と関連するタスク要求に与える影響を批判的に評価する。
この分析を容易にするために,GPS衛星コンステレーションのシステムモデリング手法を導入し,特にミッションクリティカルな運用中に衛星の故障が発生した場合,性能動態やタスク分散戦略の調査を可能にする。
さらに、衛星コンステレーション管理のための強化学習(RL)技術、特にQ-ラーニング、ポリシーグラディエント、ディープQ-ネットワーク(DQN)、およびPPOを導入し、衛星故障後の再構成やリタスキングによる課題に対処する。
その結果, DQNとPPOは, 平均報酬, タスク完了率, 応答時間で有効な結果が得られることを示した。
関連論文リスト
- Addressing single object tracking in satellite imagery through prompt-engineered solutions [2.098136587906041]
衛星映像における小型物体の学習自由点追跡手法を提案する。
我々の戦略は、リモートセンシングアプリケーションにおける衛星画像に適したロバストな追跡ソリューションの大幅な進歩を示している。
論文 参考訳(メタデータ) (2024-07-07T23:50:29Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
統合衛星、航空、地上ネットワーク(ISATN)は多様な通信技術の洗練された収束を表現している。
本稿では,Large Language Models (LLM) を ISATN に統合するトランスフォーメーションの可能性について検討する。
論文 参考訳(メタデータ) (2024-07-05T15:23:43Z) - Monte Carlo Tree Search Satellite Scheduling Under Cloud Cover Uncertainty [0.0]
本稿では,マルチサテライトコレクションスケジューリング問題(m-SatCSP)に対処する。
雲などの不確実な条件下での衛星群上のタスクスケジューリングを最適化することを目的としている。
論文 参考訳(メタデータ) (2024-05-31T15:50:46Z) - Toward Autonomous Cooperation in Heterogeneous Nanosatellite
Constellations Using Dynamic Graph Neural Networks [0.0]
本稿では,星座とCPを動的ネットワークとしてモデル化し,その課題を克服する新しい手法を提案する。
トレーニングされたニューラルネットワークは、平均絶対誤差3.6分でネットワーク遅延を予測することができる。
シミュレーションの結果,提案手法は大型衛星ネットワークの接触計画の設計に成功し,従来のアプローチと同様,遅延率を29.1%向上させることができた。
論文 参考訳(メタデータ) (2024-03-01T17:26:02Z) - Security-Sensitive Task Offloading in Integrated Satellite-Terrestrial Networks [15.916368067018169]
本稿では,衛星・地上ネットワーク(ISTN)構造にLEO衛星エッジを配置し,テキストセキュリティに敏感な計算タスクのオフロードを支援することを提案する。
本研究では,タスク割り当ておよびタスクオフロード順序問題を協調最適化問題としてモデル化し,タスクオフロード遅延,エネルギー消費,攻撃回数の最小化と信頼性制約を満たす。
論文 参考訳(メタデータ) (2024-01-20T07:29:55Z) - Innovations in the field of on-board scheduling technologies [64.41511459132334]
本稿では、ミッション自律のためのソフトウェアフレームワークに組み込まれた、オンボードスケジューラを提案する。
スケジューラは線形整数プログラミングに基づいており、ブランチ・アンド・カット・ソルバの使用に依存している。
この技術は地球観測のシナリオでテストされており、その性能を最先端のスケジューリング技術と比較している。
論文 参考訳(メタデータ) (2022-05-04T12:00:49Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Mission schedule of agile satellites based on Proximal Policy
Optimization Algorithm [0.0]
衛星のミッションスケジュールは、近年の宇宙活動において重要な部分である。
本稿では、強化学習アルゴリズムを組み込んで、その問題を記述するための新しい方法を見つける。
論文 参考訳(メタデータ) (2020-07-05T14:28:44Z) - Learning to Track Dynamic Targets in Partially Known Environments [48.49957897251128]
我々は、アクティブな目標追跡を解決するために、深層強化学習アプローチを用いる。
特に,アクティブ・トラッカー・ターゲティング・ネットワーク(ATTN)を導入し,アクティブ・ターゲティング・ターゲティングの主要なタスクを解決するための統一的なRLポリシーを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:45:24Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。