論文の概要: On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making
- arxiv url: http://arxiv.org/abs/2409.17125v1
- Date: Wed, 25 Sep 2024 17:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:33:29.676346
- Title: On-orbit Servicing for Spacecraft Collision Avoidance With Autonomous Decision Making
- Title(参考訳): 自律的意思決定による宇宙船衝突回避のための軌道上サービテーション
- Authors: Susmitha Patnala, Adam Abdin,
- Abstract要約: 本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOSミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サーベイラを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study develops an AI-based implementation of autonomous On-Orbit Servicing (OOS) mission to assist with spacecraft collision avoidance maneuvers (CAMs). We propose an autonomous `servicer' trained with Reinforcement Learning (RL) to autonomously detect potential collisions between a target satellite and space debris, rendezvous and dock with endangered satellites, and execute optimal CAM. The RL model integrates collision risk estimates, satellite specifications, and debris data to generate an optimal maneuver matrix for OOS rendezvous and collision prevention. We employ the Cross-Entropy algorithm to find optimal decision policies efficiently. Initial results demonstrate the feasibility of autonomous robotic OOS for collision avoidance services, focusing on one servicer spacecraft to one endangered satellite scenario. However, merging spacecraft rendezvous and optimal CAM presents significant complexities. We discuss design challenges and critical parameters for the successful implementation of the framework presented through a case study.
- Abstract(参考訳): 本研究は、宇宙船衝突回避演習(CAM)を支援するために、AIによるOOS(Autonomous On-Orbit Servicing)ミッションの実装を開発する。
本稿では、RL(Reinforcement Learning)を用いて訓練された自律型サービスを提案し、ターゲット衛星と宇宙デブリの衝突を自律的に検出し、絶滅危惧衛星とのランデブーとドッキングを行い、最適なCAMを実行する。
RLモデルは衝突リスク推定、衛星仕様、デブリデータを統合し、OOSランデブーと衝突防止のための最適操作行列を生成する。
我々はクロスエントロピーアルゴリズムを用いて最適な決定ポリシーを効率的に見つける。
最初の結果は、衝突回避サービスのための自律型ロボットOOSの実現可能性を示し、1つのボイジャー宇宙船を1つの絶滅危惧衛星シナリオに焦点をあてた。
しかし、宇宙船のランデブーと最適なCAMの融合は、非常に複雑である。
本稿では,ケーススタディを通じて提示されたフレームワークの実装を成功させる上で,設計上の課題と重要なパラメータについて論じる。
関連論文リスト
- AI-Driven Risk-Aware Scheduling for Active Debris Removal Missions [0.0]
低地球軌道でのデブリは、宇宙の持続可能性と宇宙船の安全性に対する重大な脅威である。
装甲輸送車両(OTV)は破片の軌道離脱を促進し、将来の衝突リスクを減らす。
深部補強学習(DRL)に基づく装甲決定計画モデルを構築し,OTVを最適デブリ除去シークエンシングを計画する。
提案手法を用いることで、最適なミッションプランを見つけ、衝突リスクの高い破片のリスクハンドリングを含む自律的に計画の更新を学べることが示されている。
論文 参考訳(メタデータ) (2024-09-25T15:16:07Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
本研究は、強化学習技術に基づく宇宙船における自律的なCA意思決定機能の実装を提案する。
提案フレームワークは,軌道上の破片の状態を不完全な監視し,正確な衝突回避策(CAM)を実行するためのポリシーをAIシステムが効果的に学習できるようにする。
目的は、CAMを自律的に実施するための意思決定プロセスを、人間の介入なしに宇宙船に委譲することである。
論文 参考訳(メタデータ) (2023-10-29T10:15:33Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
衝突の危険箇所を特定するためには、リアルタイムで自動的な宇宙船の特徴認識が必要である。
新しいアルゴリズムSpaceYOLOは、最先端のオブジェクト検出器YOLOv5を、人間にインスパイアされた意思決定プロセスに基づいて、別個のニューラルネットワークで融合する。
SpaceYOLOの自律型宇宙船検出の性能は、ハードウェア・イン・ザ・ループ実験において通常のYOLOv5と比較される。
論文 参考訳(メタデータ) (2023-02-02T02:11:39Z) - Reward Function Optimization of a Deep Reinforcement Learning Collision
Avoidance System [0.0]
無人航空機システム(UAS)の普及により、航空宇宙規制当局はこれらの航空機と衝突回避システムとの相互運用性を検討するようになった。
現在義務化されているTCASの制限により、連邦航空局は新たなソリューションである空中衝突回避システムX(ACAS X)の開発を委託した。
本研究では,サロゲートを用いてパラメータを調整したDRL衝突回避システムの利点について検討する。
論文 参考訳(メタデータ) (2022-12-01T20:20:41Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Constrained optimisation of preliminary spacecraft configurations under
the design-for-demise paradigm [1.0205541448656992]
現在打ち上げられ、既に軌道上にある中規模の衛星のほとんどは、0.0001の死亡リスク閾値を満たさない。
衛星メーカーとミッションオペレーターは、制御された再突入を通じて処理を行う必要がある。
この追加コストと複雑さは、宇宙船が直接カジュアルリスク規制に準拠しているため取り除くことができる。
論文 参考訳(メタデータ) (2020-12-27T17:48:29Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。