論文の概要: Can a single neuron learn quantiles?
- arxiv url: http://arxiv.org/abs/2106.03702v1
- Date: Mon, 7 Jun 2021 15:12:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-09 02:42:15.362263
- Title: Can a single neuron learn quantiles?
- Title(参考訳): 単一ニューロンは量子論を学ぶことができるか?
- Authors: Edgardo Solano-Carrillo
- Abstract要約: 単一ユニットからなる最小限のニューラルネットワークアーキテクチャに基づいて、連続確率変数に対する新しい非パラメトリック量子化推定法を導入する。
回帰の文脈では、分割された共形予測設定の下で予測の不確かさを定量化するためにこの手法を用いることができる。
ベンチマーク実験は、この手法が最先端のソリューションと品質とカバレッジの競争力があることを実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A novel non-parametric quantile estimation method for continuous random
variables is introduced, based on a minimal neural network architecture
consisting of a single unit. Its advantage over estimations from ranking the
order statistics is shown, specifically for small sample size. In a regression
context, the method can be used to quantify predictive uncertainty under the
split conformal prediction setting, where prediction intervals are estimated
from the residuals of a pre-trained model on a held-out validation set to
quantify the uncertainty in future predictions. Benchmarking experiments
demonstrate that the method is competitive in quality and coverage with
state-of-the-art solutions, with the added benefit of being more
computationally efficient.
- Abstract(参考訳): 単一ユニットからなる最小限のニューラルネットワークアーキテクチャに基づいて、連続確率変数に対する新しい非パラメトリック量子化推定法を導入する。
順序統計のランク付けによる推定に対する優位性は、特に小さなサンプルサイズに対して示される。
回帰文脈では、予測区間を事前学習したモデルの残差から推定し、将来の予測の不確かさを定量化するために、分割等角予測設定の下で予測の不確実性を定量化することができる。
ベンチマーク実験により、この手法は最先端のソリューションと品質とカバレッジの競争力があり、より計算効率が良いという利点が示された。
関連論文リスト
- Awareness of uncertainty in classification using a multivariate model and multi-views [1.3048920509133808]
提案モデルでは,不確かさ予測を正規化し,予測と不確かさ推定の両方を計算する訓練を行う。
複数ビュー予測と不確かさと信頼度を考慮し、最終的な予測を計算する方法をいくつか提案した。
提案手法はクリーンでノイズの多いラベル付きCIFAR-10データセットを用いて検証した。
論文 参考訳(メタデータ) (2024-04-16T06:40:51Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Last layer state space model for representation learning and uncertainty
quantification [0.0]
本稿では,低次元状態を学ぶための表現学習段階と,不確実性推定のための状態空間モデルという2つのステップで分類・回帰タスクを分解することを提案する。
我々は、状態空間をベースとした最後の層を追加することで、既存のトレーニング済みニューラルネットワーク上に予測分布を推定する方法を実証する。
我々のモデルは、未知あるいは不利用可能な変数のため、ノイズの多いデータ構造を考慮し、予測に対して信頼区間を提供することができる。
論文 参考訳(メタデータ) (2023-07-04T08:37:37Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Confidence estimation of classification based on the distribution of the
neural network output layer [4.529188601556233]
現実の世界における予測モデルの適用を防ぐための最も一般的な問題の1つは一般化の欠如である。
ニューラルネットワーク分類モデルにより生成された特定の予測の不確かさを推定する新しい手法を提案する。
提案手法は,この予測に対応するロジット値の分布に基づいて,特定の予測の信頼性を推定する。
論文 参考訳(メタデータ) (2022-10-14T12:32:50Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。