論文の概要: Scalable Computation of Monge Maps with General Costs
- arxiv url: http://arxiv.org/abs/2106.03812v1
- Date: Mon, 7 Jun 2021 17:23:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:28:03.782947
- Title: Scalable Computation of Monge Maps with General Costs
- Title(参考訳): 汎用コストによるmongeマップのスケーラブルな計算
- Authors: Jiaojiao Fan, Shu Liu, Shaojun Ma, Yongxin Chen, Haomin Zhou
- Abstract要約: モンジュマップ(Monge map)は、2つの確率分布の間の最適な輸送マップを指す。
本稿では,2つの確率分布間のMongeマップをスケーラブルに計算するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.273462158073302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monge map refers to the optimal transport map between two probability
distributions and provides a principled approach to transform one distribution
to another. In spite of the rapid developments of the numerical methods for
optimal transport problems, computing the Monge maps remains challenging,
especially for high dimensional problems. In this paper, we present a scalable
algorithm for computing the Monge map between two probability distributions.
Our algorithm is based on a weak form of the optimal transport problem, thus it
only requires samples from the marginals instead of their analytic expressions,
and can accommodate optimal transport between two distributions with different
dimensions. Our algorithm is suitable for general cost functions, compared with
other existing methods for estimating Monge maps using samples, which are
usually for quadratic costs. The performance of our algorithms is demonstrated
through a series of experiments with both synthetic and realistic data.
- Abstract(参考訳): モンジュ写像は、2つの確率分布の間の最適な輸送写像を示し、ある分布を別の分布に変換するための原理的アプローチを提供する。
最適輸送問題に対する数値的手法の急速な発展にもかかわらず、特に高次元問題において、モンジュ写像の計算は依然として困難である。
本稿では,2つの確率分布間のMongeマップをスケーラブルに計算するアルゴリズムを提案する。
我々のアルゴリズムは最適輸送問題の弱い形式に基づいており、解析式の代わりに限界からのサンプルしか必要とせず、異なる次元の2つの分布間の最適な輸送に適応できる。
本アルゴリズムは一般費用関数に適しており, 従来のサンプルを用いたモンジュマップ推定法と比較して, 通常は二次コストに適合する。
アルゴリズムの性能は、合成データと実データの両方を用いて一連の実験によって実証される。
関連論文リスト
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference [1.740133468405535]
静的および条件付き最適輸送(COT)問題の解を近似する2つのニューラルネットワークアプローチを提案する。
我々は、ベンチマークデータセットとシミュレーションに基づく逆問題を用いて、両アルゴリズムを競合する最先端のアプローチと比較する。
論文 参考訳(メタデータ) (2023-10-25T20:20:09Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
一般化Schr"odinger Bridge (GSB) 問題設定は、機械学習の内外を問わず、多くの科学領域で一般的である。
我々は最近の進歩に触発された新しいマッチングアルゴリズムである一般化シュリンガーブリッジマッチング(GSBM)を提案する。
このような一般化は条件最適制御の解法として、変分近似を用いることができることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:42:11Z) - Semi-supervised Learning of Pushforwards For Domain Translation &
Adaptation [3.800498098285222]
関連するデータ空間に2つの確率密度が与えられると、1つの密度をもう1つの密度にプッシュする写像を求める。
広いアプリケーション領域にユーティリティを持つマップには、サンプル外のデータポイントに適用するためのマップが必要です。
本稿では,正規化フローを利用して地図をパラメータ化する新しいプッシュフォワードマップ学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-18T00:35:32Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Minimax estimation of discontinuous optimal transport maps: The
semi-discrete case [14.333765302506658]
2つの確率分布、$P$ および $Q$ in $mathbb Rd$ の間の最適輸送写像を推定する問題を考える。
エントロピックな最適輸送に基づく推定器は、次元に依存しないミニマックス最適速度$n-1/2$で収束することを示す。
論文 参考訳(メタデータ) (2023-01-26T18:41:38Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
実世界の画像超解像(SR)タスクは、しばしば、教師付き技術の適用を制限するペアデータセットを持っていない。
本稿では,非バイアスのOTマップを知覚輸送コストで学習する未ペアSRのアルゴリズムを提案する。
我々のアルゴリズムは、大規模無人AIM-19データセット上で、最先端のパフォーマンスをほぼ提供する。
論文 参考訳(メタデータ) (2022-02-02T16:21:20Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
滑らかな条件下では、2つの分布の間の正方形ワッサーシュタイン距離は、魅力的な統計的誤差上界で効率的に計算できる。
生成的モデリングのような応用への関心の対象は、基礎となる最適輸送写像である。
そこで本研究では,地図上の統計的誤差であるL2$が,既存のミニマックス下限値とほぼ一致し,スムーズな地図推定が可能となる最初のトラクタブルアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-03T13:45:36Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。