論文の概要: A generative flow for conditional sampling via optimal transport
- arxiv url: http://arxiv.org/abs/2307.04102v1
- Date: Sun, 9 Jul 2023 05:36:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-11 15:30:35.978727
- Title: A generative flow for conditional sampling via optimal transport
- Title(参考訳): 最適輸送による条件付サンプリングのための生成フロー
- Authors: Jason Alfonso, Ricardo Baptista, Anupam Bhakta, Noam Gal, Alfin Hou,
Isa Lyubimova, Daniel Pocklington, Josef Sajonz, Giulio Trigila, and Ryan
Tsai
- Abstract要約: 本研究は、参照サンプルを対象に反復的にマッピングする非パラメトリック生成モデルを提案する。
このモデルは、対象分布の条件を特徴付けるためにコンポーネントが示されるブロック三角形輸送マップを使用する。
これらのマップは、L2$コスト関数を重み付けした最適輸送問題の解法から生じ、条件付きサンプリングのための[Trigila and Tabak, 2016]におけるデータ駆動アプローチを拡張した。
- 参考スコア(独自算出の注目度): 1.0486135378491266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling conditional distributions is a fundamental task for Bayesian
inference and density estimation. Generative models, such as normalizing flows
and generative adversarial networks, characterize conditional distributions by
learning a transport map that pushes forward a simple reference (e.g., a
standard Gaussian) to a target distribution. While these approaches
successfully describe many non-Gaussian problems, their performance is often
limited by parametric bias and the reliability of gradient-based (adversarial)
optimizers to learn these transformations. This work proposes a non-parametric
generative model that iteratively maps reference samples to the target. The
model uses block-triangular transport maps, whose components are shown to
characterize conditionals of the target distribution. These maps arise from
solving an optimal transport problem with a weighted $L^2$ cost function,
thereby extending the data-driven approach in [Trigila and Tabak, 2016] for
conditional sampling. The proposed approach is demonstrated on a two
dimensional example and on a parameter inference problem involving nonlinear
ODEs.
- Abstract(参考訳): サンプリング条件分布はベイズ推定と密度推定の基本的なタスクである。
フローの正規化や生成的敵ネットワークのような生成モデルは、単純な参照(例えば標準ガウス)を目標分布にプッシュするトランスポートマップを学習することで条件分布を特徴付ける。
これらのアプローチは非ゲージ問題の多くをうまく記述するが、パラメトリックバイアスと、これらの変換を学ぶための勾配ベース(逆)最適化器の信頼性によって、その性能はしばしば制限される。
本研究は,参照サンプルをターゲットに反復的にマッピングする非パラメトリック生成モデルを提案する。
モデルはブロック三角形輸送マップを使用し、そのコンポーネントは対象分布の条件を特徴付ける。
これらのマップは、重み付き$L^2$コスト関数による最適輸送問題の解法から生じ、条件付きサンプリングのための[Trigila and Tabak, 2016]におけるデータ駆動アプローチを拡張した。
提案手法は,2次元の例と非線形odeを含むパラメータ推論問題について実証した。
関連論文リスト
- Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps [13.355769319031184]
条件付きシミュレーションは統計モデリングの基本的な課題である。
1つの有望なアプローチは条件付きブレニエ写像を構築することである。
等方的最適輸送の計算スケーラビリティに基づく条件付きブレニエ写像の非パラメトリック推定器を提案する。
論文 参考訳(メタデータ) (2024-11-11T17:32:47Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - A transport approach to sequential simulation-based inference [0.0]
静的モデルパラメータの逐次ベイズ推定を効率的に行うためのトランスポートベース手法を提案する。
この戦略は、パラメータとデータの合同分布から条件分布を抽出し、構造化された(例えば、ブロック三角形)輸送マップを推定する。
これにより、モデルのないオンラインフェーズにおける輸送マップによる後部密度の勾配に基づく特徴付けが可能になる。
論文 参考訳(メタデータ) (2023-08-26T18:53:48Z) - Inverse Models for Estimating the Initial Condition of Spatio-Temporal
Advection-Diffusion Processes [5.814371485767541]
逆問題とは、観測データを用いて物理過程の未知のパラメータについて推論することである。
本稿では,空間的に疎いデータストリームを用いた時空間対流拡散過程の初期状態の推定について検討する。
論文 参考訳(メタデータ) (2023-02-08T15:30:16Z) - Continuous and Distribution-free Probabilistic Wind Power Forecasting: A
Conditional Normalizing Flow Approach [1.684864188596015]
条件正規化フロー(CNF)に基づく確率的風力予測のためのデータ駆動型手法を提案する。
既存の手法とは対照的に、このアプローチは(非パラメトリックおよび量子的アプローチのように)分布自由であり、連続確率密度を直接生成することができる。
論文 参考訳(メタデータ) (2022-06-06T08:48:58Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Resampling Base Distributions of Normalizing Flows [0.0]
学習された拒絶サンプリングに基づいて,フローを正規化するためのベース分布を導入する。
ログライクリフの最大化と逆Kulback-Leibler分散の最適化の両方を用いて、適切な学習アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-10-29T14:44:44Z) - Variational Transport: A Convergent Particle-BasedAlgorithm for Distributional Optimization [106.70006655990176]
分散最適化問題は機械学習や統計学で広く発生する。
本稿では,変分輸送と呼ばれる粒子に基づく新しいアルゴリズムを提案する。
目的関数がpolyak-Lojasiewicz (PL) (Polyak, 1963) の機能バージョンと滑らかな条件を満たすとき、変分輸送は線形に収束することを示す。
論文 参考訳(メタデータ) (2020-12-21T18:33:13Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。