論文の概要: Rethinking Graph Transformers with Spectral Attention
- arxiv url: http://arxiv.org/abs/2106.03893v1
- Date: Mon, 7 Jun 2021 18:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-09 15:49:48.809637
- Title: Rethinking Graph Transformers with Spectral Attention
- Title(参考訳): スペクトル注意によるグラフトランスフォーマの再考
- Authors: Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent
L\'etourneau and Prudencio Tossou
- Abstract要約: 我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
- 参考スコア(独自算出の注目度): 13.068288784805901
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, the Transformer architecture has proven to be very
successful in sequence processing, but its application to other data
structures, such as graphs, has remained limited due to the difficulty of
properly defining positions. Here, we present the $\textit{Spectral Attention
Network}$ (SAN), which uses a learned positional encoding (LPE) that can take
advantage of the full Laplacian spectrum to learn the position of each node in
a given graph. This LPE is then added to the node features of the graph and
passed to a fully-connected Transformer. By leveraging the full spectrum of the
Laplacian, our model is theoretically powerful in distinguishing graphs, and
can better detect similar sub-structures from their resonance. Further, by
fully connecting the graph, the Transformer does not suffer from
over-squashing, an information bottleneck of most GNNs, and enables better
modeling of physical phenomenons such as heat transfer and electric
interaction. When tested empirically on a set of 4 standard datasets, our model
performs on par or better than state-of-the-art GNNs, and outperforms any
attention-based model by a wide margin, becoming the first fully-connected
architecture to perform well on graph benchmarks.
- Abstract(参考訳): 近年、Transformerアーキテクチャはシーケンシャル処理において非常に成功したが、グラフなどの他のデータ構造への応用は、位置を適切に定義することが困難であるために制限され続けている。
ここでは、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するためにラプラシアスペクトルを完全に活用できる$\textit{Spectral Attention Network}$(SAN)を示す。
このLPEはグラフのノード機能に追加され、完全に接続されたTransformerに渡される。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
さらに、グラフを完全に接続することで、トランスフォーマーはほとんどのGNNの情報ボトルネックであるオーバー・スクワッシングに悩まされず、熱伝達や電気的相互作用といった物理現象のモデリングを改善できる。
実験的に4つの標準データセットでテストした場合、我々のモデルは最先端のGNNよりも同等以上のパフォーマンスを示し、あらゆる注意ベースのモデルを広範囲にわたって上回り、グラフベンチマークでうまく機能する最初の完全接続アーキテクチャとなる。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information [0.8184895397419141]
グラフトランスフォーマーは、メッセージパッシンググラフニューラルネットワーク(MP-GNN)の強力な代替品として登場した。
本稿では,グラフスペクトル情報を直接符号化する新しい手法であるグラフスペクトルトークンを提案する。
既存のグラフ変換器であるGraphTransとSubFormerを拡張して,提案手法の有効性をベンチマークする。
論文 参考訳(メタデータ) (2024-04-08T15:24:20Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations [75.71298846760303]
ノード特性予測ベンチマークにおいて,一層注意が驚くほど高い性能を示すことを示す。
提案手法をSGFormer (Simplified Graph Transformer) と呼ぶ。
提案手法は,大きなグラフ上にトランスフォーマーを構築する上で,独立性のある新たな技術パスを啓蒙するものである。
論文 参考訳(メタデータ) (2023-06-19T08:03:25Z) - Stable and Transferable Hyper-Graph Neural Networks [95.07035704188984]
グラフニューラルネットワーク(GNN)を用いたハイパーグラフでサポートする信号処理アーキテクチャを提案する。
スペクトル類似性により任意のグラフにまたがってGNNの安定性と転送可能性の誤差をバウンドするフレームワークを提供する。
論文 参考訳(メタデータ) (2022-11-11T23:44:20Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
有向非巡回グラフ(DAG)上の変換器について検討し,DAGに適したアーキテクチャ適応を提案する。
グラフトランスフォーマーは、DAGに適したグラフニューラルネットワークを概ね上回り、品質と効率の両面でSOTAグラフトランスフォーマーの性能を向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-24T12:04:52Z) - Deformable Graph Transformer [31.254872949603982]
本稿では動的にサンプリングされたキーと値のペアでスパースアテンションを行うDeformable Graph Transformer (DGT)を提案する。
実験により、我々の新しいグラフトランスフォーマーは既存のトランスフォーマーベースモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2022-06-29T00:23:25Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - Do Transformers Really Perform Bad for Graph Representation? [62.68420868623308]
標準の Transformer アーキテクチャをベースに構築された Graphormer について述べる。
グラフでTransformerを利用する上で重要な洞察は、グラフの構造情報をモデルに効果的にエンコードする必要があることである。
論文 参考訳(メタデータ) (2021-06-09T17:18:52Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
標準モデルと比較して4つの新しい特性を持つグラフトランスを紹介します。
アーキテクチャはエッジ特徴表現に拡張され、化学(結合型)やリンク予測(知識グラフにおけるエンタリティ関係)といったタスクに重要なものとなる。
論文 参考訳(メタデータ) (2020-12-17T16:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。