Random Forest classifier for EEG-based seizure prediction
- URL: http://arxiv.org/abs/2106.04510v1
- Date: Wed, 2 Jun 2021 15:46:35 GMT
- Title: Random Forest classifier for EEG-based seizure prediction
- Authors: Remy Ben Messaoud and Mario Chavez
- Abstract summary: This paper presents a Machine Learning based method for epileptic seizure prediction which outperforms state-of-the art methods.
We assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence period (SOP) of 30 minutes.
Our approach achieves a sensitivity of 82.07 % and a low false positive rate (FPR) of 0.0799 /h.
- Score: 0.12183405753834559
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epileptic seizure prediction has gained considerable interest in the
computational Epilepsy research community. This paper presents a Machine
Learning based method for epileptic seizure prediction which outperforms
state-of-the art methods. We compute a probability for a given epoch, of being
pre-ictal against interictal using the Random Forest classifier and introduce
new concepts to enhance the robustness of the algorithm to false alarms. We
assessed our method on 20 patients of the benchmark scalp EEG CHB-MIT dataset
for a seizure prediction horizon (SPH) of 5 minutes and a seizure occurrence
period (SOP) of 30 minutes. Our approach achieves a sensitivity of 82.07 % and
a low false positive rate (FPR) of 0.0799 /h. We also tested our approach on
intracranial EEG recordings.
Related papers
- A Multi-Modal Non-Invasive Deep Learning Framework for Progressive Prediction of Seizures [10.250114060511134]
This paper introduces an innovative framework designed for progressive (granular in time to onset) prediction of seizures.
Our framework employs advanced Deep Learning (DL) techniques and uses personalized data from a network of non-invasive electroencephalogram (EEG) and electrocardiogram (ECG) sensors.
Our model achieves 95% sensitivity, 98% specificity, and 97% accuracy, averaged among 29 patients.
arXiv Detail & Related papers (2024-10-26T04:06:09Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
We develop a competitive deep learning model for seizure prediction using scalp electroencephalogram (EEG) signals.
We trained and evaluated our model on 19 pediatric patients of the open-access CHB-MIT dataset in a subject-specific manner.
Using the OPP of each patient, preictal and interictal segments were correctly identified with an average sensitivity of 99.31%, specificity of 95.34%, AUC of 99.35%, and F1- score of 97.46%.
arXiv Detail & Related papers (2024-07-20T13:49:14Z) - Epilepsy Seizure Detection and Prediction using an Approximate Spiking
Convolutional Transformer [12.151626573534001]
This paper presents a neuromorphic Spiking Convolutional Transformer, named Spiking Conformer, to detect and predict epileptic seizure segments.
We report evaluation results from the Spiking Conformer model using the Boston Children's Hospital-MIT (CHB-MIT) EEG dataset.
Using raw EEG data as input, the proposed Spiking Conformer achieved an average sensitivity rate of 94.9% and a specificity rate of 99.3% for the seizure detection task.
arXiv Detail & Related papers (2024-01-21T19:23:56Z) - Machine Learning Techniques for Predicting the Short-Term Outcome of
Resective Surgery in Lesional-Drug Resistance Epilepsy [1.759008116536278]
Seven dif-ferent categorization algorithms were used to analyze the data.
The support vector machine (SVM) with the linear kernel yielded 76.1% in terms of accuracy.
arXiv Detail & Related papers (2023-02-10T13:04:47Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - An End-to-End Deep Learning Approach for Epileptic Seizure Prediction [4.094649684498489]
We propose an end-to-end deep learning solution using a convolutional neural network (CNN)
Overall sensitivity, false prediction rate, and area under receiver operating characteristic curve reaches 93.5%, 0.063/h, 0.981 and 98.8%, 0.074/h, 0.988 on two datasets respectively.
arXiv Detail & Related papers (2021-08-17T05:49:43Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.