論文の概要: Incentivizing Efficient Equilibria in Traffic Networks with Mixed
Autonomy
- arxiv url: http://arxiv.org/abs/2106.04678v1
- Date: Thu, 6 May 2021 03:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-13 13:56:22.312912
- Title: Incentivizing Efficient Equilibria in Traffic Networks with Mixed
Autonomy
- Title(参考訳): 混合自律型交通ネットワークにおける効率的な平衡のインセンティブ
- Authors: Erdem B{\i}y{\i}k, Daniel A. Lazar, Ramtin Pedarsani, Dorsa Sadigh
- Abstract要約: 車両小隊化は、車両小隊化による道路容量の増加によって交通渋滞を減少させる可能性がある。
我々は、(i)最短経路を選択する人間ドライバーと(ii)相乗りサービスという2つの交通手段を持つ平行道路のネットワークについて検討する。
我々は、混合自律で車両の流れのモデルと、価格と遅延の異なるルート間で自律サービスユーザーがどのように選択するかのモデルを定式化する。
- 参考スコア(独自算出の注目度): 17.513581783749707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion has large economic and social costs. The introduction of
autonomous vehicles can potentially reduce this congestion by increasing road
capacity via vehicle platooning and by creating an avenue for influencing
people's choice of routes. We consider a network of parallel roads with two
modes of transportation: (i) human drivers, who will choose the quickest route
available to them, and (ii) a ride hailing service, which provides an array of
autonomous vehicle route options, each with different prices, to users. We
formalize a model of vehicle flow in mixed autonomy and a model of how
autonomous service users make choices between routes with different prices and
latencies. Developing an algorithm to learn the preferences of the users, we
formulate a planning optimization that chooses prices to maximize a social
objective. We demonstrate the benefit of the proposed scheme by comparing the
results to theoretical benchmarks which we show can be efficiently calculated.
- Abstract(参考訳): 交通渋滞は経済的、社会的コストが大きい。
自動運転車の導入は、車両小隊による道路容量の増加と、人々の経路選択に影響を与える道を作ることによって、この混雑を減少させる可能性がある。
交通手段が2つある並行道路のネットワークについて検討する: (i) 最短のルートを選択できる人間ドライバーと、(ii) 異なる価格の自動運転車の経路オプションを提供する配車サービス。
我々は、混合自律で車両の流れのモデルと、価格と遅延の異なるルート間で自律サービスユーザーがどのように選択するかのモデルを定式化する。
ユーザの嗜好を学習するアルゴリズムを開発し,社会的目的を最大化するために価格を選択する計画最適化を定式化する。
提案手法の利点は,提案手法を理論ベンチマークと比較し,効率よく計算できることを示す。
関連論文リスト
- Personalized and Context-aware Route Planning for Edge-assisted Vehicles [11.39182190564773]
グラフニューラルネットワーク(GNN)と深部強化学習(DRL)に基づく新しいアプローチを提案する。
運転者の過去の軌跡を解析することにより,運転者の嗜好の指標として関連する道路属性を分類する。
提案するGNNベースのDRLフレームワークを実環境の道路ネットワークを用いて評価し,ドライバの嗜好に対応する能力を示す。
論文 参考訳(メタデータ) (2024-07-25T12:14:12Z) - A Bi-Objective Approach to Last-Mile Delivery Routing Considering Driver Preferences [42.16665455951525]
MOVRP(Multi-Objective Vehicle Routing Problem)は、輸送・物流業界における複雑な最適化問題である。
本稿では,運転者の判断や操作者の嗜好を考慮した経路作成を目的としたMOVRPに対する新しいアプローチを提案する。
この目的に対処するための2つのアプローチとして,視覚的に魅力的な経路計画と,同様の経路を計画するための過去の運転行動のデータマイニングを評価した。
論文 参考訳(メタデータ) (2024-05-25T04:25:00Z) - Traffic Smoothing Controllers for Autonomous Vehicles Using Deep
Reinforcement Learning and Real-World Trajectory Data [45.13152172664334]
我々は、自動運転車に展開できる交通平滑なクルーズコントローラーを設計する。
我々はテネシー州のI-24ハイウェイの実際の軌跡データを活用している。
その結果、低4%の自律走行車侵入速度で、多くの停止・停止波を示す軌道上で15%以上の燃料を節約できることが判明した。
論文 参考訳(メタデータ) (2024-01-18T00:50:41Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
本稿では,他のドライバの動作から不確実性が生ずる移動トラフィックにマージする複雑なタスクに焦点を当てる。
我々はこの問題を部分的に観測可能なマルコフ決定プロセス(POMDP)とみなし、モンテカルロ木探索でオンラインに解決する。
POMDPの解決策は、接近する車に道を譲る、前方の車から安全な距離を維持する、あるいは交通に合流するといった、高いレベルの運転操作を行う政策である。
論文 参考訳(メタデータ) (2023-03-29T16:12:45Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
本稿では,数百台の車両による大規模道路網における交通流を効率的にシミュレートし,最適化する枠組みを提案する。
このフレームワークは、Answer Set Programming (ASP)エンコーディングを利用して、ネットワーク内の車両の動きを正式に記述する。
これにより、ネットワーク内の車両の経路を最適化し、関連するメトリクスの幅を減らすことができる。
論文 参考訳(メタデータ) (2022-08-05T10:50:38Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Balancing Fairness and Efficiency in Traffic Routing via Interpolated
Traffic Assignment [29.556405472628402]
補間交通割当問題(英: Interpolated Traffic Assignment Problem, I-TAP)は、公平性促進と効率性向上のための交通割当を補間する凸プログラムである。
輸送ネットワークにおけるI-TAPと最先端アルゴリズムの数値比較について述べる。
論文 参考訳(メタデータ) (2021-03-31T20:32:52Z) - End-to-end Interpretable Neural Motion Planner [78.69295676456085]
複雑な都市環境での自律走行学習のためのニューラルモーションプランナー(NMP)を提案する。
我々は,生lidarデータとhdマップを入力とし,解釈可能な中間表現を生成する全体モデルを設計した。
北米のいくつかの都市で収集された実世界の運転データにおける我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2021-01-17T14:16:12Z) - PassGoodPool: Joint Passengers and Goods Fleet Management with
Reinforcement Learning aided Pricing, Matching, and Route Planning [29.73314892749729]
本稿では,商品と旅客輸送を組み合わせた需要対応型艦隊管理フレームワークを提案する。
提案手法は,分散システムの成長に伴う計算コストを最小限に抑えるため,各車両内で独立して展開可能である。
論文 参考訳(メタデータ) (2020-11-17T23:15:03Z) - A Distributed Model-Free Ride-Sharing Approach for Joint Matching,
Pricing, and Dispatching using Deep Reinforcement Learning [32.0512015286512]
我々は、動的で需要に敏感で、価格に基づく車両通行者マッチングとルート計画フレームワークを提案する。
我々の枠組みはニューヨーク市税のデータセットを用いて検証されている。
実験の結果,実時間および大規模設定におけるアプローチの有効性が示された。
論文 参考訳(メタデータ) (2020-10-05T03:13:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。