論文の概要: EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
- arxiv url: http://arxiv.org/abs/2106.04804v1
- Date: Wed, 9 Jun 2021 04:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-10 15:04:44.258449
- Title: EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
- Title(参考訳): EMFlow:EMとDeep Flowモデルによる遅延空間のデータインプット
- Authors: Qi Ma and Sujit K. Ghosh
- Abstract要約: 本稿では,予測最大化アルゴリズムのオンライン版を用いて,潜在空間における命令処理を行うEMFlowという計算手法を提案する。
提案するEMFlowは,計算精度と収束速度の両面で競合する手法よりも優れた性能を有する。
- 参考スコア(独自算出の注目度): 5.076419064097734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: High dimensional incomplete data can be found in a wide range of systems. Due
to the fact that most of the data mining techniques and machine learning
algorithms require complete observations, data imputation is vital for
down-stream analysis. In this work, we introduce an imputation approach, called
EMFlow, that performs imputation in an latent space via an online version of
Expectation-Maximization (EM) algorithm and connects the latent space and the
data space via the normalizing flow (NF). The inference of EMFlow is iterative,
involving updating the parameters of online EM and NF alternatively. Extensive
experimental results on multivariate and image datasets show that the proposed
EMFlow has superior performance to competing methods in terms of both
imputation quality and convergence speed.
- Abstract(参考訳): 高次元の不完全なデータは、幅広いシステムで見ることができる。
データマイニング技術や機械学習アルゴリズムの大部分が完全な観測を必要とするため、データ計算は下流分析に不可欠である。
本研究では,期待最大化(em)アルゴリズムのオンライン版を通じて潜在空間におけるインプテーションを行い,正規化フロー(nf)を介して潜在空間とデータ空間を接続する,emflowと呼ばれるインプテーション手法を導入する。
EMFlowの推論は反復的であり、オンラインEMとNFのパラメータを更新する。
多変量および画像データセットの大規模な実験結果から,提案したEMFlowは計算精度と収束速度の両面で競合手法よりも優れた性能を示した。
関連論文リスト
- Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models [16.91835461818938]
我々は物理で導かれた新しいディープ・インバージョン・アルゴリズムを提案し、1Dマグネトロンモデル(MT)を推定する。
本手法では,コスト関数の最小化を物理的に導く,微分可能なモデリング演算子を用いる。
提案手法は, 異なる周波数でのフィールドデータと合成データを用いて検証し, 取得モデルが他の結果よりも精度が高いことを示す。
論文 参考訳(メタデータ) (2024-10-20T04:17:59Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
この研究は、DNN層の最適なデータフローを人間の努力なしに数秒で自動的に見つけるために、Dataflow Code Propagation (DCP)と呼ばれる効率的なデータ中心のアプローチを提案する。
DCPは、様々な最適化目標を最小化するために、望ましい勾配方向に向けてデータフローコードを効率的に更新する神経予測器を学習する。
例えば、追加のトレーニングデータを使用しないDCPは、数千のサンプルを使用して完全な検索を行うGAMAメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-09T05:16:44Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - Inpainting Computational Fluid Dynamics with Deep Learning [8.397730500554047]
有効な流体データ補完法は、流体力学実験において必要なセンサー数を削減する。
流体データ完備化問題の誤った性質は、理論解を得るのを違法に困難にしている。
ベクトル量子化法を用いて、完全および不完全流体データ空間を離散値下次元表現にマッピングする。
論文 参考訳(メタデータ) (2024-02-27T03:44:55Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
低分解能および雑音測定による流れ場データの高分解能再構成は実験流体力学において重要である。
ディープラーニングのアプローチは、このような超高解像度なタスクに適していることが示されている。
本研究では,物理インフォームドニューラルネットワーク(PINN)を時間空間における流れ場データの超解像に適用する。
論文 参考訳(メタデータ) (2022-03-29T09:58:30Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。