論文の概要: Condition Integration Memory Network: An Interpretation of the Meaning
of the Neuronal Design
- arxiv url: http://arxiv.org/abs/2106.05181v2
- Date: Mon, 6 Sep 2021 06:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 05:07:02.883372
- Title: Condition Integration Memory Network: An Interpretation of the Meaning
of the Neuronal Design
- Title(参考訳): 条件統合記憶ネットワーク:神経設計の意味の解釈
- Authors: Cheng Qian
- Abstract要約: 本論文では,プリミティブニューラルネットワークの機能的性質に関する仮説的枠組みを紹介する。
ニューロンとシナプスの活動が、世界の動的変化を象徴的に再現できるという考えを分析します。
アルゴリズム構造に参加せずにこれを実現する。
- 参考スコア(独自算出の注目度): 10.421465303670638
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Understanding the basic operational logics of the nervous system is essential
to advancing neuroscientific research. However, theoretical efforts to tackle
this fundamental problem are lacking, despite the abundant empirical data about
the brain that has been collected in the past few decades. To address this
shortcoming, this document introduces a hypothetical framework for the
functional nature of primitive neural networks. It analyzes the idea that the
activity of neurons and synapses can symbolically reenact the dynamic changes
in the world and thus enable an adaptive system of behavior. More
significantly, the network achieves this without participating in an
algorithmic structure. When a neuron's activation represents some symbolic
element in the environment, each of its synapses can indicate a potential
change to the element and its future state. The efficacy of a synaptic
connection further specifies the element's particular probability for, or
contribution to, such a change. As it fires, a neuron's activation is
transformed to its postsynaptic targets, resulting in a chronological shift of
the represented elements. As the inherent function of summation in a neuron
integrates the various presynaptic contributions, the neural network mimics the
collective causal relationship of events in the observed environment.
- Abstract(参考訳): 神経系の基本的な操作論理を理解することは神経科学研究を進める上で不可欠である。
しかし、この根本的な問題に取り組むための理論的取り組みは、過去数十年で収集された脳に関する豊富な経験的データにもかかわらず、不足している。
この欠点に対処するため,本論文では,プリミティブニューラルネットワークの機能的性質に関する仮説的枠組みを紹介する。
ニューロンとシナプスの活動が、世界の動的変化を象徴的に再現し、適応的な行動システムを可能にするという考えを分析します。
さらに、ネットワークはアルゴリズム構造に参加せずにこれを実現する。
ニューロンの活性化が環境におけるいくつかの象徴的要素を表すとき、それぞれのシナプスは要素とその将来の状態への潜在的な変化を示すことができる。
シナプス接続の有効性はさらに、そのような変化に対する要素の特定の確率、または寄与を規定する。
発火すると、ニューロンの活性化はシナプス後標的に変換され、表現された要素の時系列的変化をもたらす。
ニューロンにおける和の本来の機能は、様々なシナプス前の貢献を統合するため、ニューラルネットワークは観察された環境における事象の集合因果関係を模倣する。
関連論文リスト
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Learn to integrate parts for whole through correlated neural variability [8.173681663544757]
感覚知覚は感覚ニューロンの反応に起因し、特定の知覚物体の物理的特性に関連付けられた知覚信号の集まりに反応する。
これらの神経反応から脳がどのように知覚情報を抽出するかを明らかにすることは、計算神経科学と機械学習の両方において重要な課題である。
本稿では,知覚情報を知覚ニューロンの相関変数に符号化し,下流ニューロンの発火速度に変換する統計力学理論を提案する。
論文 参考訳(メタデータ) (2024-01-01T13:05:29Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
アストロサイトは、ユビキタスでエニグマティックな非神経細胞である。
アストロサイトは脳機能や神経計算においてより直接的で活発な役割を果たす。
論文 参考訳(メタデータ) (2023-11-06T20:31:01Z) - Single Biological Neurons as Temporally Precise Spatio-Temporal Pattern
Recognizers [0.0]
理論は、脳内の単一ニューロンは、時間的に非常に複雑な時間的パターン認識因子と見なされるべきという中心的な考え方に焦点を当てている。
第2章では、特定の時間的入力パターンに応答して、単一ニューロンが時間的に正確な出力パターンを生成できることを実証する。
第3章では、現実的な皮質ニューロンの識別可能な深部ネットワークを用いて、ニューロンの出力の影響を近似する。
論文 参考訳(メタデータ) (2023-09-26T17:32:08Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Formalising the Use of the Activation Function in Neural Inference [0.0]
生体ニューロンのスパイクが、統計物理学における特定の位相遷移のクラスに属するかについて議論する。
人工ニューロンは生物学的神経膜力学の平均場モデルであることが数学的に示されている。
これにより、選択的神経発射を抽象的に処理し、パーセプトロン学習における活性化機能の役割を定式化する。
論文 参考訳(メタデータ) (2021-02-02T19:42:21Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。