論文の概要: Convolutional Filtering on Sampled Manifolds
- arxiv url: http://arxiv.org/abs/2211.11058v1
- Date: Sun, 20 Nov 2022 19:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 23:04:13.752412
- Title: Convolutional Filtering on Sampled Manifolds
- Title(参考訳): サンプル多様体上の畳み込みフィルタリング
- Authors: Zhiyang Wang and Luana Ruiz and Alejandro Ribeiro
- Abstract要約: サンプル多様体上の畳み込みフィルタリングは連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
- 参考スコア(独自算出の注目度): 122.06927400759021
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The increasing availability of geometric data has motivated the need for
information processing over non-Euclidean domains modeled as manifolds. The
building block for information processing architectures with desirable
theoretical properties such as invariance and stability is convolutional
filtering. Manifold convolutional filters are defined from the manifold
diffusion sequence, constructed by successive applications of the
Laplace-Beltrami operator to manifold signals. However, the continuous manifold
model can only be accessed by sampling discrete points and building an
approximate graph model from the sampled manifold. Effective linear information
processing on the manifold requires quantifying the error incurred when
approximating manifold convolutions with graph convolutions. In this paper, we
derive a non-asymptotic error bound for this approximation, showing that
convolutional filtering on the sampled manifold converges to continuous
manifold filtering. Our findings are further demonstrated empirically on a
problem of navigation control.
- Abstract(参考訳): 幾何学的データの可用性の高まりにより、多様体としてモデル化された非ユークリッド領域上の情報処理の必要性が高まった。
不変性や安定性などの望ましい理論特性を持つ情報処理アーキテクチャのビルディングブロックは畳み込みフィルタリングである。
マニフォールド畳み込みフィルタは多様体拡散列から定義され、ラプラス・ベルトラミ作用素の多様体信号への連続的な応用によって構成される。
しかし、連続多様体モデルは離散点をサンプリングし、サンプル多様体から近似グラフモデルを構築することでのみアクセスすることができる。
多様体上の効果的な線形情報処理には、グラフ畳み込みを伴う多様体畳み込みを近似する際に生じる誤差を定量化する必要がある。
本稿では,この近似に対する非漸近的誤差を導出し,サンプル多様体上の畳み込みフィルタリングが連続多様体フィルタリングに収束することを示す。
本研究は,ナビゲーション制御の問題点を実証的に明らかにした。
関連論文リスト
- Manifold Diffusion Fields [11.4726574705951]
非ユークリッド幾何学におけるデータ拡散モデルの学習を解き放つアプローチを提案する。
ラプラス・ベルトラミ作用素の固有関数を通して多様体上の固有座標系を定義する。
我々はMDFが従来の手法よりも多様性と忠実さでそのような関数の分布を捉えることができることを示す。
論文 参考訳(メタデータ) (2023-05-24T21:42:45Z) - Manifold Learning by Mixture Models of VAEs for Inverse Problems [1.5749416770494704]
任意の位相の多様体を表現するために,変分オートエンコーダの混合モデルを学習する。
学習多様体に制限されたデータ忠実度項を最小化することにより、逆問題の解法に使用する。
本手法を低次元トイの例に応用し, 脱臭・電気インピーダンストモグラフィーにも応用した。
論文 参考訳(メタデータ) (2023-03-27T14:29:04Z) - Tangent Bundle Convolutional Learning: from Manifolds to Cellular Sheaves and Back [84.61160272624262]
この畳み込み操作に基づいて,タンジェントバンドルフィルタとタンジェントバンドルニューラルネットワーク(TNN)を定義する。
タンジェントバンドルフィルタは、スカラー多様体フィルタ、グラフフィルタ、標準畳み込みフィルタを連続的に一般化するスペクトル表現を許容する。
提案したアーキテクチャが様々な学習課題に与える影響を数値的に評価する。
論文 参考訳(メタデータ) (2023-03-20T17:57:15Z) - The Manifold Scattering Transform for High-Dimensional Point Cloud Data [16.500568323161563]
本稿では,自然システムにおけるデータセットへの多様体散乱変換の実装のための実践的スキームを提案する。
本手法は信号の分類や多様体の分類に有効であることを示す。
論文 参考訳(メタデータ) (2022-06-21T02:15:00Z) - The Manifold Hypothesis for Gradient-Based Explanations [55.01671263121624]
勾配に基づく説明アルゴリズムは知覚的に整合した説明を提供する。
特徴属性がデータの接する空間と一致しているほど、知覚的に一致している傾向にあることを示す。
説明アルゴリズムは、その説明をデータ多様体と整合させるよう積極的に努力すべきである。
論文 参考訳(メタデータ) (2022-06-15T08:49:24Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
我々は,現在の解法がデータ多様体からサンプルパスを逸脱し,エラーが蓄積することを示す。
この問題に対処するため、多様体の制約に着想を得た追加の補正項を提案する。
本手法は理論上も経験上も従来の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-06-02T09:06:10Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
データ多様体上の「チャートマップ」として局所正規化フローの混合を学習するための新しい統計フレームワークを導入する。
本フレームワークは, 正規化フローのシグネチャ特性を保ちながら, 最近の手法の表現性を向上し, 正確な密度評価を行う。
論文 参考訳(メタデータ) (2022-03-22T09:22:18Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - Inferring Manifolds From Noisy Data Using Gaussian Processes [17.166283428199634]
ほとんどの既存の多様体学習アルゴリズムは、元のデータを低次元座標で置き換える。
本稿では,これらの問題に対処するための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-14T15:50:38Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
画像分類モデルに対する最近のゼロオーダーのハードラベル攻撃は、ファーストオーダーのグラデーションレベルの代替品に匹敵する性能を示している。
最近、グラデーションレベルの設定では、通常の敵対的な例がデータ多様体から離れ、オンマニホールドの例が実際には一般化エラーであることが示されている。
雑音の多い多様体距離オラクルに基づく情報理論論的議論を提案し、敵の勾配推定を通じて多様体情報を漏洩させる。
論文 参考訳(メタデータ) (2021-03-04T20:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。