論文の概要: Enhanced Consistency Bi-directional GAN(CBiGAN) for Malware Anomaly Detection
- arxiv url: http://arxiv.org/abs/2506.07372v1
- Date: Mon, 09 Jun 2025 02:43:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 21:10:47.107258
- Title: Enhanced Consistency Bi-directional GAN(CBiGAN) for Malware Anomaly Detection
- Title(参考訳): マルウェア異常検出のための整合性双方向GAN(CBiGAN)の強化
- Authors: Thesath Wijayasiri, Kar Wai Fok, Vrizlynn L. L. Thing,
- Abstract要約: 本稿では,マルウェア異常検出分野におけるCBiGANの適用について紹介する。
我々は、ポータブル実行可能ファイル(PE)とObject Linking and Embedding(OLE)ファイルの両方を含む、いくつかのデータセットを利用する。
次に,214のマルウェアファミリーから自己コンパイルされた悪意のある実行ファイルを含む,PEおよびOLEファイルの多種多様なセットに対して,我々のモデルを評価した。
- 参考スコア(独自算出の注目度): 0.25163931116642785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Static analysis, a cornerstone technique in cybersecurity, offers a noninvasive method for detecting malware by analyzing dormant software without executing potentially harmful code. However, traditional static analysis often relies on biased or outdated datasets, leading to gaps in detection capabilities against emerging malware threats. To address this, our study focuses on the binary content of files as key features for malware detection. These binary contents are transformed and represented as images, which then serve as inputs to deep learning models. This method takes into account the visual patterns within the binary data, allowing the model to analyze potential malware effectively. This paper introduces the application of the CBiGAN in the domain of malware anomaly detection. Our approach leverages the CBiGAN for its superior latent space mapping capabilities, critical for modeling complex malware patterns by utilizing a reconstruction error-based anomaly detection method. We utilized several datasets including both portable executable (PE) files as well as Object Linking and Embedding (OLE) files. We then evaluated our model against a diverse set of both PE and OLE files, including self-collected malicious executables from 214 malware families. Our findings demonstrate the robustness of this innovative approach, with the CBiGAN achieving high Area Under the Curve (AUC) results with good generalizability, thereby confirming its capability to distinguish between benign and diverse malicious files with reasonably high accuracy.
- Abstract(参考訳): サイバーセキュリティの基盤となる技術である静的解析は、潜在的に有害なコードを実行することなく、休眠中のソフトウェアを分析してマルウェアを検出する非侵襲的な方法を提供する。
しかし、従来の静的分析は、しばしばバイアスや時代遅れのデータセットに依存しており、新たなマルウェアの脅威に対する検出能力の欠如につながっている。
そこで本研究では,マルウェア検出の鍵となる機能として,ファイルのバイナリコンテンツに着目した。
これらのバイナリコンテンツは変換されてイメージとして表現され、深層学習モデルの入力として機能する。
この方法はバイナリデータ内の視覚的パターンを考慮に入れ、モデルが潜在的マルウェアを効果的に分析できるようにする。
本稿では,マルウェア異常検出分野におけるCBiGANの適用について紹介する。
提案手法では,CBiGANを遅延空間マッピング機能に利用し,再構成誤差に基づく異常検出手法を用いて複雑なマルウェアパターンのモデル化に重要である。
ポータブル実行可能ファイル(PE)とObject LinkingとEmbeddding(OLE)ファイルの両方を含む、いくつかのデータセットを使用しました。
次に,214のマルウェアファミリーから自己コンパイルされた悪意のある実行ファイルを含む,PEおよびOLEファイルの多種多様なセットに対して,我々のモデルを評価した。
CBiGANはAUC(Area Under the Curve)を高い一般化性で達成し,良質なファイルと多種多様な悪意のあるファイルとを合理的に識別する能力を確認した。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
近年,定量化によるマルウェア検出から機械学習への移行が進んでいる。
本稿では、EMBERから始まるバイナリファイルの類似性研究の領域における欠陥に対処することを提案する。
我々は、EMBERに類似情報とマルウェアのクラスタグを付与し、類似性空間のさらなる研究を可能にする。
論文 参考訳(メタデータ) (2023-10-03T06:58:45Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Self-Supervised Vision Transformers for Malware Detection [0.0]
本稿では、視覚変換器(ViT)アーキテクチャに基づくマルウェア検出のための自己超越型ディープラーニングモデルであるSHERLOCKを提案する。
提案手法は, マクロF1スコアが.497, 491で, マルチクラスマルウェア分類における最先端技術よりも優れている。
論文 参考訳(メタデータ) (2022-08-15T07:49:58Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - HAPSSA: Holistic Approach to PDF Malware Detection Using Signal and
Statistical Analysis [16.224649756613655]
悪意あるPDF文書は、様々なセキュリティ組織に深刻な脅威をもたらす。
最先端のアプローチでは、機械学習(ML)を使用してPDFマルウェアを特徴付ける機能を学ぶ。
本稿では,PDF マルウェア検出のための簡易かつ効果的な総合的なアプローチを導出する。
論文 参考訳(メタデータ) (2021-11-08T18:32:47Z) - Malware Analysis with Artificial Intelligence and a Particular Attention
on Results Interpretability [0.0]
本稿では,バイナリファイルからグレースケール画像への変換に基づくモデルを提案する。
サンプルが充填されているか、85%の精度で暗号化されているかを決定することができる。
この種のツールは、一般的な検出モデルの解釈可能性の欠如を補うデータアナリストにとって非常に有用であるべきです。
論文 参考訳(メタデータ) (2021-07-23T09:40:05Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。