論文の概要: Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment
- arxiv url: http://arxiv.org/abs/2204.01690v1
- Date: Mon, 4 Apr 2022 17:56:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-05 16:56:32.870812
- Title: Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment
- Title(参考訳): Deep Image:IoT環境におけるオンラインマルウェア検出のための貴重な画像ベースディープラーニング手法
- Authors: Meysam Ghahramani, Rahim Taheri, Mohammad Shojafar, Reza Javidan,
Shaohua Wan
- Abstract要約: 本稿では,マルウェア解析の異なる視点を考察し,各サンプルの特徴のリスクレベルを算出した。
通常の機械学習基準、すなわち精度とFPRに加えて、サンプルのリスクに基づく基準も提案されている。
その結果,ディープ・ラーニング・アプローチがマルウェアの検出に有効であることが示唆された。
- 参考スコア(独自算出の注目度): 12.558284943901613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The volume of malware and the number of attacks in IoT devices are rising
everyday, which encourages security professionals to continually enhance their
malware analysis tools. Researchers in the field of cyber security have
extensively explored the usage of sophisticated analytics and the efficiency of
malware detection. With the introduction of new malware kinds and attack
routes, security experts confront considerable challenges in developing
efficient malware detection and analysis solutions. In this paper, a different
view of malware analysis is considered and the risk level of each sample
feature is computed, and based on that the risk level of that sample is
calculated. In this way, a criterion is introduced that is used together with
accuracy and FPR criteria for malware analysis in IoT environment. In this
paper, three malware detection methods based on visualization techniques called
the clustering approach, the probabilistic approach, and the deep learning
approach are proposed. Then, in addition to the usual machine learning criteria
namely accuracy and FPR, a proposed criterion based on the risk of samples has
also been used for comparison, with the results showing that the deep learning
approach performed better in detecting malware
- Abstract(参考訳): マルウェアの量とIoTデバイスの攻撃数は毎日増加しており、セキュリティの専門家がマルウェア分析ツールを継続的に強化することを奨励している。
サイバーセキュリティ分野の研究者は、高度な分析の利用とマルウェア検出の効率を広く研究してきた。
新しいマルウェアの種類と攻撃経路の導入により、セキュリティの専門家は効率的なマルウェア検出と分析ソリューションを開発する上で大きな課題に直面している。
本稿では,マルウェア解析の異なる視点を考察し,各サンプル特徴のリスクレベルを算出し,そのリスクレベルを算出した。
このようにして、IoT環境でのマルウェア分析の精度とFPR基準とともに使用される基準が導入された。
本稿では,クラスタリングアプローチ,確率的アプローチ,ディープラーニングアプローチと呼ばれる可視化手法に基づく3つのマルウェア検出手法を提案する。
そして, 従来の機械学習基準である精度とfprに加えて, サンプルのリスクに基づく提案手法と, マルウェア検出に深層学習アプローチが有効であることを示す結果との比較を行った。
関連論文リスト
- A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Explainable Malware Analysis: Concepts, Approaches and Challenges [0.0]
我々は、現在最先端のMLベースのマルウェア検出技術と、一般的なXAIアプローチについてレビューする。
本稿では,本研究の実施状況と説明可能なマルウェア解析の課題について論じる。
この理論的調査は、マルウェア検出におけるXAI応用に関心を持つ研究者のエントリポイントとなる。
論文 参考訳(メタデータ) (2024-09-09T08:19:33Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
本研究では,機械学習技術を用いたマルウェア検出の徹底的な検討を行う。
その目的は、脅威をより効果的に識別し緩和することで、サイバーセキュリティの能力を向上させることである。
論文 参考訳(メタデータ) (2024-03-04T17:22:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。