論文の概要: Visual scoping operations for physical assembly
- arxiv url: http://arxiv.org/abs/2106.05654v1
- Date: Thu, 10 Jun 2021 10:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-12 14:32:35.433353
- Title: Visual scoping operations for physical assembly
- Title(参考訳): 物理組立のための視覚スコープ操作
- Authors: Felix J Binder, Marcelo M Mattar, David Kirsh, Judith E Fan
- Abstract要約: 本稿では,次のサブゴールとして空間領域を交互に定義することで,計画と行動のインターリーブを行う視覚スコープを提案する。
ビジュアルスコーピングは,計算コストのごく一部しか必要とせず,サブゴールプランナーに匹敵するタスク性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Planning is hard. The use of subgoals can make planning more tractable, but
selecting these subgoals is computationally costly. What algorithms might
enable us to reap the benefits of planning using subgoals while minimizing the
computational overhead of selecting them? We propose visual scoping, a strategy
that interleaves planning and acting by alternately defining a spatial region
as the next subgoal and selecting actions to achieve it. We evaluated our
visual scoping algorithm on a variety of physical assembly problems against two
baselines: planning all subgoals in advance and planning without subgoals. We
found that visual scoping achieves comparable task performance to the subgoal
planner while requiring only a fraction of the total computational cost.
Together, these results contribute to our understanding of how humans might
make efficient use of cognitive resources to solve complex planning problems.
- Abstract(参考訳): 計画は難しい。
サブゴールの使用は計画をより扱いやすいものにするが、これらのサブゴールの選択は計算コストがかかる。
選択の計算オーバーヘッドを最小限に抑えながら、サブゴールを使用する計画のメリットを享受できるアルゴリズムは何でしょうか?
空間領域を次のサブゴールとして交互に定義し、それを達成するためのアクションを選択することにより、計画と行動を切り離す戦略であるビジュアルスコーピングを提案する。
視覚的スコーピングアルゴリズムを,前もって全てのサブゴールを計画することと,副ゴールなしで計画することの2つの基本ラインに対して,様々な物理組立問題に対して評価した。
視覚的スコーピングは,計算コストのごく一部しか必要とせず,サブゴールプランナーに匹敵するタスク性能を達成できることがわかった。
これらの結果は、人間が複雑な計画問題の解決に認知資源を効率的に活用する方法の理解に寄与する。
関連論文リスト
- Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
本稿では,タスクとモーションプランニングを一つの検索に統一するTAMP手法を提案する。
我々のアプローチは、オフザシェルフAIサーチの計算効率を活用して、物理的に実現可能な計画が得られるような、オブジェクト中心の動作制約の抽象化に基づいている。
論文 参考訳(メタデータ) (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Fast and Precise: Adjusting Planning Horizon with Adaptive Subgoal Search [15.157605648149685]
本稿では,アダプティブサブゴールサーチ(AdaSubS)を提案する。
到達不能なサブゴールを迅速にフィルタリングするために検証機構が使用される。
AdaSubSは3つの複雑な推論タスクにおいて階層的計画アルゴリズムを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2022-06-01T18:28:23Z) - Adversarial Plannning [8.930624061602046]
計画アルゴリズムは、自律的な振舞いを指示するために計算システムで使用される。
このようなアルゴリズムが、プランナーを阻止しようとする敵に対してどのように機能するかは不明だ。
論文 参考訳(メタデータ) (2022-05-01T21:43:06Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
本稿では,デリゲートの原理に基づく階層計画のための新しいフレームワークとアルゴリズムを提案する。
このプランニング手法は、様々な領域における古典的なプランニングと強化学習技術に対して、実験的に非常に競争力があることを示す。
論文 参考訳(メタデータ) (2020-10-25T04:36:20Z) - Planning with Learned Object Importance in Large Problem Instances using
Graph Neural Networks [28.488201307961624]
現実の計画問題は、数百から数千ものオブジェクトを巻き込むことが多い。
単一推論パスにおけるオブジェクトの重要性を予測するためのグラフニューラルネットワークアーキテクチャを提案する。
提案手法では,プランナと遷移モデルをブラックボックスとして扱い,既製のプランナで使用することができる。
論文 参考訳(メタデータ) (2020-09-11T18:55:08Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
未来に予測し、計画する能力は、世界で行動するエージェントにとって基本である。
視覚的予測と計画のための現在の学習手法は、長期的タスクでは失敗する。
本稿では,これらの制約を克服可能な視覚的予測と計画のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:58:56Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。