論文の概要: A Unified Framework for Constructing Nonconvex Regularizations
- arxiv url: http://arxiv.org/abs/2106.06123v1
- Date: Fri, 11 Jun 2021 02:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 04:26:01.919438
- Title: A Unified Framework for Constructing Nonconvex Regularizations
- Title(参考訳): 非凸正規化を構成する統一フレームワーク
- Authors: Zhiyong Zhou
- Abstract要約: この論文では、非正規化関数の構築方法が未定である。
本稿では,非正規化関数の形で補足する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Over the past decades, many individual nonconvex methods have been proposed
to achieve better sparse recovery performance in various scenarios. However,
how to construct a valid nonconvex regularization function remains open in
practice. In this paper, we fill in this gap by presenting a unified framework
for constructing the nonconvex regularization based on the probability density
function. Meanwhile, a new nonconvex sparse recovery method constructed via the
Weibull distribution is studied.
- Abstract(参考訳): 過去数十年にわたり、様々なシナリオでスパース回復性能を達成するために、複数の非凸法が提案されてきた。
しかし、有効な非凸正規化関数をどのように構築するかは、実際には未開である。
本稿では,確率密度関数に基づく非凸正則化を構成するための統一フレームワークを提案することで,このギャップを埋める。
一方,Weibull分布を用いた新しい非凸スパース回収法について検討した。
関連論文リスト
- A KL-based Analysis Framework with Applications to Non-Descent Optimization Methods [5.779838187603272]
クルディカ・ロジャシエヴィチ特性に基づく非発散型シナリオにおける非発散型最適化手法の新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-06-04T12:49:46Z) - Equivariant Frames and the Impossibility of Continuous Canonicalization [10.02508080274145]
非重み付きフレーム・アブラッシングは滑らかで非対称な関数を不連続な対称関数に変えることができることを示す。
我々は、点クラウド上の$SO(2)$,$SO(3)$,$S_n$の作用に対して、効率的で連続的な重み付きフレームを構築する。
論文 参考訳(メタデータ) (2024-02-25T12:40:42Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Exploiting hidden structures in non-convex games for convergence to Nash
equilibrium [62.88214569402201]
現代の機械学習アプリケーションは、非協調的なナッシュリリアとして定式化することができる。
決定論的環境と決定論的環境の両方に明確な収束保証を提供する。
論文 参考訳(メタデータ) (2023-12-27T15:21:25Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
分散化されたミニマックス最適化は、幅広い機械学習に応用されているため、ここ数年で活発に研究されている。
本稿では,非コンカブ問題に対する2つの新しい分散化ミニマックス最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:19:39Z) - Efficient Informed Proposals for Discrete Distributions via Newton's
Series Approximation [13.349005662077403]
我々は,強い要求を伴わずに任意の離散分布に対する勾配的提案を開発する。
提案手法は,ニュートン級数展開による離散確率比を効率よく近似する。
提案手法は,メトロポリス・ハスティングス・ステップの有無にかかわらず,コンバージェンスレートが保証されていることを実証する。
論文 参考訳(メタデータ) (2023-02-27T16:28:23Z) - Distribution-Free Robust Linear Regression [5.532477732693]
共変体の分布を仮定せずにランダムな設計線形回帰を研究する。
最適部分指数尾を持つオーダー$d/n$の過大なリスクを達成する非線形推定器を構築する。
我々は、Gy"orfi, Kohler, Krzyzak, Walk が原因で、truncated least squares 推定器の古典的境界の最適版を証明した。
論文 参考訳(メタデータ) (2021-02-25T15:10:41Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Distributed Stochastic Nonconvex Optimization and Learning based on
Successive Convex Approximation [26.11677569331688]
本稿では,ネットワーク内のエージェントの総和の分散アルゴリズム最小化のための新しいフレームワークを提案する。
提案手法は分散ニューラルネットワークに適用可能であることを示す。
論文 参考訳(メタデータ) (2020-04-30T15:36:46Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
本稿では,離散化を体系的に実現する幾何学的枠組みを提案する。
我々は、シンプレクティックな非保守的、特に散逸的なハミルトン系への一般化が、制御された誤差まで収束率を維持することができることを示す。
論文 参考訳(メタデータ) (2020-04-15T00:36:49Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
そこで本研究では,対数様比統計量と正規化フローに基づく新しい分布アライメント手法を提案する。
入力領域の局所構造を保存する領域アライメントにおいて,結果の最小化を実験的に検証する。
論文 参考訳(メタデータ) (2020-03-26T22:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。