論文の概要: SimSwap: An Efficient Framework For High Fidelity Face Swapping
- arxiv url: http://arxiv.org/abs/2106.06340v1
- Date: Fri, 11 Jun 2021 12:23:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-14 14:14:46.129247
- Title: SimSwap: An Efficient Framework For High Fidelity Face Swapping
- Title(参考訳): SimSwap: 高忠実な顔スワッピングのための効率的なフレームワーク
- Authors: Renwang Chen, Xuanhong Chen, Bingbing Ni, Yanhao Ge
- Abstract要約: 我々は,汎用的で忠実な顔交換を目的とした,Simple Swap (SimSwap) と呼ばれる効率的なフレームワークを提案する。
本フレームワークでは,対象顔の属性を保存しながら,任意の元顔の同一性を任意の対象顔に転送することができる。
我々のSimSwapは、従来の最先端手法よりも優れた属性を保ちながら、競争力のあるアイデンティティ性能を達成することができることを示した。
- 参考スコア(独自算出の注目度): 43.59969679039686
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose an efficient framework, called Simple Swap (SimSwap), aiming for
generalized and high fidelity face swapping. In contrast to previous approaches
that either lack the ability to generalize to arbitrary identity or fail to
preserve attributes like facial expression and gaze direction, our framework is
capable of transferring the identity of an arbitrary source face into an
arbitrary target face while preserving the attributes of the target face. We
overcome the above defects in the following two ways. First, we present the ID
Injection Module (IIM) which transfers the identity information of the source
face into the target face at feature level. By using this module, we extend the
architecture of an identity-specific face swapping algorithm to a framework for
arbitrary face swapping. Second, we propose the Weak Feature Matching Loss
which efficiently helps our framework to preserve the facial attributes in an
implicit way. Extensive experiments on wild faces demonstrate that our SimSwap
is able to achieve competitive identity performance while preserving attributes
better than previous state-of-the-art methods. The code is already available on
github: https://github.com/neuralchen/SimSwap.
- Abstract(参考訳): 我々は,汎用的で忠実な顔交換を目的とした,Simple Swap (SimSwap) と呼ばれる効率的なフレームワークを提案する。
顔の表情や視線方向などの属性を保存する能力に欠ける従来のアプローチとは対照的に,我々のフレームワークでは,対象顔の属性を保存しながら,任意の元顔のアイデンティティを任意のターゲット顔に転送することができる。
上記の欠陥を、以下の2つの方法で克服する。
まず,ID注入モジュール(IIM)について,特徴レベルにおいて原面の識別情報をターゲット面に転送する。
このモジュールを用いることで、識別固有の顔交換アルゴリズムのアーキテクチャを任意の顔交換のためのフレームワークに拡張する。
第二に、我々のフレームワークが暗黙的に顔の属性を保存するのを効率的に支援するWeak Feature Matching Lossを提案する。
我々のSimSwapは、従来の最先端手法よりも優れた属性を保ちながら、競争力のあるアイデンティティ性能を達成することができることを示した。
コードはすでにgithubで公開されている。
関連論文リスト
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - High-Fidelity Face Swapping with Style Blending [16.024260677867076]
高忠実な顔交換のための革新的なエンドツーエンドフレームワークを提案する。
まず、スタイルGANベースの顔属性エンコーダを導入し、顔から重要な特徴を抽出し、潜在スタイルコードに変換する。
第二に、ターゲットからターゲットへFace IDを効果的に転送するアテンションベースのスタイルブレンディングモジュールを導入する。
論文 参考訳(メタデータ) (2023-12-17T23:22:37Z) - ReliableSwap: Boosting General Face Swapping Via Reliable Supervision [9.725105108879717]
本稿では,訓練中に対象とソースの同一性が異なる場合のイメージレベルのガイダンスとして機能する,サイクルトリプレットと呼ばれる信頼性の高い監視機能を構築することを提案する。
具体的には,顔の再現とブレンディング技術を用いて,前もって実際の画像からスワップされた顔の合成を行う。
フェーススワッピングフレームワークであるReliableSwapは、既存のフェースワップネットワークの性能を無視できるオーバーヘッドで向上させることができる。
論文 参考訳(メタデータ) (2023-06-08T17:01:14Z) - End-to-end Face-swapping via Adaptive Latent Representation Learning [12.364688530047786]
本稿では,高精細・高精細・高精細・高精細・高精細な顔交換のための新しいエンドツーエンド統合フレームワークを提案する。
顔の知覚とブレンドをエンドツーエンドのトレーニングとテストのプロセスに統合することで、野生の顔に高いリアルな顔スワッピングを実現することができる。
論文 参考訳(メタデータ) (2023-03-07T19:16:20Z) - FaceDancer: Pose- and Occlusion-Aware High Fidelity Face Swapping [62.38898610210771]
そこで我々は,FaceDancerという顔のスワップとID転送のための新しい単一ステージ手法を提案する。
アダプティブ・フィーチャー・フュージョン・アテンション(AFFA)と解釈的特徴類似性規則化(IFSR)の2つの主要なコントリビューションがある。
論文 参考訳(メタデータ) (2022-10-19T11:31:38Z) - StyleSwap: Style-Based Generator Empowers Robust Face Swapping [90.05775519962303]
StyleSwapという簡潔で効果的なフレームワークを紹介します。
私たちの中核となる考え方は、スタイルベースのジェネレータを活用して、高忠実で堅牢な顔交換を可能にすることです。
最小限の変更だけで、StyleGAN2アーキテクチャはソースとターゲットの両方から望まれる情報をうまく処理できる。
論文 参考訳(メタデータ) (2022-09-27T16:35:16Z) - Learning Disentangled Representation for One-shot Progressive Face
Swapping [65.98684203654908]
ジェネレーティブ・アドバーサリアル・ネットワークに基づくワンショット・フェイススワップのためのシンプルで効率的なFaceSwapperを提案する。
提案手法は,不整合表現モジュールと意味誘導融合モジュールから構成される。
その結果,本手法は,トレーニングサンプルの少ないベンチマークで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-24T11:19:04Z) - FaceController: Controllable Attribute Editing for Face in the Wild [74.56117807309576]
単純なフィードフォワードネットワークを提案し、高忠実度な顔を生成する。
本手法では,既存かつ容易に把握可能な事前情報を利用することで,野生の多様な顔属性の制御,転送,編集を行うことができる。
本手法では,3Dプリミティブを用いてアイデンティティ,表現,ポーズ,イルミネーションを分離し,地域別スタイルコードを用いてテクスチャとカラーを分離する。
論文 参考訳(メタデータ) (2021-02-23T02:47:28Z) - FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping [43.236261887752065]
本研究では,顔交換のための2段階フレームワークであるFaceShifterを提案する。
最初の段階では、ターゲット属性を徹底的かつ適応的に利用して、スワップされた顔を高忠実に生成する。
難解な顔合成に対処するために、HEAR-Net(Huristic Err Accnowledging Refinement Network)と呼ばれる新しいヒューリスティック・エラー認識ネットワーク(Heuristic Err Acknowledging Refinement Network)の第2ステージを付加する。
論文 参考訳(メタデータ) (2019-12-31T17:57:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。