論文の概要: Iterative Methods for Private Synthetic Data: Unifying Framework and New
Methods
- arxiv url: http://arxiv.org/abs/2106.07153v1
- Date: Mon, 14 Jun 2021 04:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 15:30:14.682532
- Title: Iterative Methods for Private Synthetic Data: Unifying Framework and New
Methods
- Title(参考訳): プライベートシンセティックデータの反復的手法:フレームワークの統一と新しい手法
- Authors: Terrance Liu, Giuseppe Vietri, Zhiwei Steven Wu
- Abstract要約: クエリリリースのためのプライベート合成データ生成について検討する。
目標は、差分プライバシーの対象となるセンシティブデータセットの衛生バージョンを構築することだ。
本枠組みでは,2つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 18.317488965846636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study private synthetic data generation for query release, where the goal
is to construct a sanitized version of a sensitive dataset, subject to
differential privacy, that approximately preserves the answers to a large
collection of statistical queries. We first present an algorithmic framework
that unifies a long line of iterative algorithms in the literature. Under this
framework, we propose two new methods. The first method, private entropy
projection (PEP), can be viewed as an advanced variant of MWEM that adaptively
reuses past query measurements to boost accuracy. Our second method, generative
networks with the exponential mechanism (GEM), circumvents computational
bottlenecks in algorithms such as MWEM and PEP by optimizing over generative
models parameterized by neural networks, which capture a rich family of
distributions while enabling fast gradient-based optimization. We demonstrate
that PEP and GEM empirically outperform existing algorithms. Furthermore, we
show that GEM nicely incorporates prior information from public data while
overcoming limitations of PMW^Pub, the existing state-of-the-art method that
also leverages public data.
- Abstract(参考訳): そこで我々は,大量の統計クエリに対する回答を概ね保存する,機密性の高いデータセットのサニタイズバージョンを構築することを目的とした,クエリリリースのためのプライベートな合成データ生成について検討した。
まず、文献における反復アルゴリズムの長い行を統一するアルゴリズムフレームワークを提案する。
この枠組みでは2つの新しい手法を提案する。
第1の手法であるプライベートエントロピープロジェクション(PEP)は、過去のクエリ測定を適応的に再利用して精度を高めるMWEMの高度な変種と見なすことができる。
第2の手法である指数関数機構(GEM)による生成ネットワークは,ニューラルネットワークによってパラメータ化される生成モデルを最適化することにより,MWEMやPEPといったアルゴリズムの計算ボトルネックを回避する。
我々は、PEPとGEMが既存のアルゴリズムを実証的に上回ることを示した。
さらに、GEMは、公開データを利用した既存の最先端手法であるPMW^Pubの限界を克服しつつ、公開データからの事前情報をうまく取り入れていることを示す。
関連論文リスト
- Recursive Gaussian Process State Space Model [4.572915072234487]
動作領域とGPハイパーパラメータの両方に適応可能な新しいオンラインGPSSM法を提案する。
ポイントを誘導するオンライン選択アルゴリズムは、情報的基準に基づいて開発され、軽量な学習を実現する。
合成データセットと実世界のデータセットの総合的な評価は,提案手法の精度,計算効率,適応性を示す。
論文 参考訳(メタデータ) (2024-11-22T02:22:59Z) - Unraveling Rodeo Algorithm Through the Zeeman Model [0.0]
任意の初期状態を考慮したハミルトニアン一般に対する固有状態と固有値スペクトルを決定するために、ロデオアルゴリズムを解く。
我々はPennylaneとQiskitのプラットフォームリソースを利用して、ハミルトンが1スピンと2スピンのゼーマンモデルによって記述されるシナリオを分析する。
論文 参考訳(メタデータ) (2024-07-16T01:29:25Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
コルモゴロフモデル(コルモゴロフモデル、英: Kolmogorov model、KM)は、確率変数の集合の基本的な確率構造を学ぶための解釈可能で予測可能な表現手法である。
正規化双対最適化と拡張勾配降下法(GD)を併用した計算スケーラブルなKM学習アルゴリズムを提案する。
提案したKM学習アルゴリズムを用いた論理的関係マイニングの精度は80%以上である。
論文 参考訳(メタデータ) (2021-07-11T10:33:02Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Local Differential Privacy for Bayesian Optimization [12.05395706770007]
局所微分プライバシー(LDP)を保証した非パラメトリックガウス過程におけるブラックボックス最適化について検討する。
具体的には、各ユーザの報酬は、プライバシーを保護するためにさらに悪化し、学習者は、後悔を最小限に抑えるために、破損した報酬にのみアクセスすることができる。
GP-UCBフレームワークとLaplace DP機構に基づく3つのほぼ最適なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-13T21:50:09Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Best Principal Submatrix Selection for the Maximum Entropy Sampling
Problem: Scalable Algorithms and Performance Guarantees [1.7640556247739623]
MESPは医療、電力システム、製造業、データサイエンスなど、多くの分野に広く応用されている。
我々はMESPのための新しい凸整数プログラムを導出し、その連続緩和がほぼ最適解をもたらすことを示す。
数値実験により,これらの近似アルゴリズムは,中規模および大規模のインスタンスをほぼ最適に効率的に解けることを示した。
論文 参考訳(メタデータ) (2020-01-23T14:14:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。