論文の概要: Linear-Time Probabilistic Solutions of Boundary Value Problems
- arxiv url: http://arxiv.org/abs/2106.07761v1
- Date: Mon, 14 Jun 2021 21:19:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 08:16:16.988672
- Title: Linear-Time Probabilistic Solutions of Boundary Value Problems
- Title(参考訳): 境界値問題の線形時間確率解
- Authors: Nicholas Kr\"amer and Philipp Hennig
- Abstract要約: 我々は、Gauss--Markov を前もって導入し、特に BVP に調整する。
これにより、線形時間で解の後方分布を計算し、よく確立された非確率的手法に匹敵する品質とコストで計算することができる。
- 参考スコア(独自算出の注目度): 27.70274403550477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a fast algorithm for the probabilistic solution of boundary value
problems (BVPs), which are ordinary differential equations subject to boundary
conditions. In contrast to previous work, we introduce a Gauss--Markov prior
and tailor it specifically to BVPs, which allows computing a posterior
distribution over the solution in linear time, at a quality and cost comparable
to that of well-established, non-probabilistic methods. Our model further
delivers uncertainty quantification, mesh refinement, and hyperparameter
adaptation. We demonstrate how these practical considerations positively impact
the efficiency of the scheme. Altogether, this results in a practically usable
probabilistic BVP solver that is (in contrast to non-probabilistic algorithms)
natively compatible with other parts of the statistical modelling tool-chain.
- Abstract(参考訳): 本稿では,境界条件下での常微分方程式である境界値問題(BVP)の確率解に対する高速アルゴリズムを提案する。
従来の研究とは対照的に、我々はガウス-マルコフ先行モデルを導入し、特にBVPに最適化し、線形時間における解の後方分布を、確立された非確率的手法に匹敵する品質とコストで計算できるようにする。
我々のモデルはさらに不確かさの定量化、メッシュの精密化、ハイパーパラメータ適応をもたらす。
これらの実践的考察がスキームの効率に与える影響を実証する。
さらに、これは(確率的でないアルゴリズムとは対照的に)統計的モデリングツールチェーンの他の部分とネイティブに互換性のある、実用的に利用可能な確率的BVPソルバをもたらす。
関連論文リスト
- Randomized algorithms and PAC bounds for inverse reinforcement learning in continuous spaces [47.907236421762626]
本研究は、連続状態と作用空間を持つ離散時間割引マルコフ決定過程を研究する。
まず、専門家の政策全体にアクセスでき、逆問題に対する解決策の集合を特徴づけるケースについて考察する。
論文 参考訳(メタデータ) (2024-05-24T12:53:07Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Probabilistic Exponential Integrators [36.98314810594263]
標準的な解法と同様に、一定の厳格なシステムに対してパフォーマンス上のペナルティを被る。
本稿では,確率的指数的解法を好適な性質を持つクラスで開発する。
多重微分方程式における提案手法の評価を行った。
論文 参考訳(メタデータ) (2023-05-24T10:13:13Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
確率のある不確実なパラメータを文脈的特徴情報を用いて推定できる実世界の多くの最適化問題である。
不確実なパラメータの分布を推定する標準的な手法とは対照的に,統合された条件推定手法を提案する。
当社のI CEOアプローチは、穏健な条件下で理論的に一貫性があることを示します。
論文 参考訳(メタデータ) (2021-10-24T04:49:35Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Variational Nonlinear System Identification [0.8793721044482611]
本稿では,非線形状態空間モデルに対するパラメータ推定について検討する。
我々は,最大確率推定に深いつながりを持つ原理的手法である変分推論(vi)アプローチを採用する。
このviアプローチは最終的に、決定論的で扱いやすく、標準最適化ツールを使って解決できる最適化問題の解としてモデルの推定を提供する。
論文 参考訳(メタデータ) (2020-12-08T05:43:50Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Kidney Exchange with Inhomogeneous Edge Existence Uncertainty [33.17472228570093]
我々は一致したサイクルとチェーンパッキングの問題の最大化を目指しており、そこでは障害の端まで有向グラフ内の構造を識別することを目的としている。
ユナイテッド・フォー・シェアリング(SUNO)のデータに対する我々のアプローチは、SAAベースの手法と同じ重み付けでより良いパフォーマンスを提供する。
論文 参考訳(メタデータ) (2020-07-07T04:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。