論文の概要: Improving Entity Linking through Semantic Reinforced Entity Embeddings
- arxiv url: http://arxiv.org/abs/2106.08495v1
- Date: Wed, 16 Jun 2021 00:27:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-18 08:09:52.545594
- Title: Improving Entity Linking through Semantic Reinforced Entity Embeddings
- Title(参考訳): Semantic Reinforced Entity Embeddingsによるエンティティリンクの改善
- Authors: Feng Hou, Ruili Wang, Jun He, Yi Zhou
- Abstract要約: そこで本稿では, コンテキスト共通性の学習を容易にするため, 実体埋め込みに微粒な意味情報を注入する手法を提案する。
エンティティの埋め込みに基づいて、エンティティリンクにおける最先端のパフォーマンスを新たに達成しました。
- 参考スコア(独自算出の注目度): 16.868791358905916
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Entity embeddings, which represent different aspects of each entity with a
single vector like word embeddings, are a key component of neural entity
linking models. Existing entity embeddings are learned from canonical Wikipedia
articles and local contexts surrounding target entities. Such entity embeddings
are effective, but too distinctive for linking models to learn contextual
commonality. We propose a simple yet effective method, FGS2EE, to inject
fine-grained semantic information into entity embeddings to reduce the
distinctiveness and facilitate the learning of contextual commonality. FGS2EE
first uses the embeddings of semantic type words to generate semantic
embeddings, and then combines them with existing entity embeddings through
linear aggregation. Extensive experiments show the effectiveness of such
embeddings. Based on our entity embeddings, we achieved new sate-of-the-art
performance on entity linking.
- Abstract(参考訳): 単語埋め込みのような単一のベクトルを持つ各エンティティの異なる側面を表すエンティティ埋め込みは、ニューラルネットワークリンクモデルの重要なコンポーネントである。
既存のエンティティ埋め込みは、標準wikipediaの記事やターゲットエンティティを取り巻くローカルコンテキストから学べる。
このようなエンティティ埋め込みは効果的だが、モデルのリンクがコンテキストの共通性を学ぶには特筆すべきすぎる。
エンティティ埋め込みにきめ細かな意味情報を注入して識別性を低減し,文脈共通性の学習を容易にする,単純かつ効果的な手法であるfgs2eeを提案する。
FGS2EEはまず意味型単語の埋め込みを使用してセマンティック埋め込みを生成し、それから線形集約を通じて既存のエンティティ埋め込みと組み合わせる。
大規模な実験は、そのような埋め込みの有効性を示している。
エンティティの埋め込みに基づいて、エンティティリンクで新たな最先端のパフォーマンスを達成しました。
関連論文リスト
- DyVo: Dynamic Vocabularies for Learned Sparse Retrieval with Entities [29.716152560414738]
学習されたスパース検索(LSR)モデルをウィキペディアの概念と実体で拡張する。
3つのエンティティリッチなドキュメントランキングデータセットを対象とした実験では、結果のDyVoモデルは、最先端のベースラインを大幅に上回る。
論文 参考訳(メタデータ) (2024-10-10T08:41:34Z) - OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNetは、大規模言語モデル(LLM)の少数ショット学習機能を利用する革新的なフレームワークで、微調整は不要である。
1)無関係なエンティティを要約してフィルタリングすることで入力を単純化するエンティティリダクションプロセッサ,(2)コンテキスト的キューと事前知識を組み合わせて正確なエンティティリンクを行うデュアルパースペクティブエンティティリンカ,(3)エンティティリンク推論における幻覚を緩和するユニークな一貫性アルゴリズムを利用するエンティティコンセンサス判定器,である。
論文 参考訳(メタデータ) (2024-10-10T02:45:23Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
より詳細なエンティティ記述を持つエンティティを曖昧にするためのエンコーダ・デコーダモデルを提案する。
GERBILベンチマークでは、EntQAと比較して、エンド・ツー・エンドのエンティティリンクが+1.5%改善されている。
論文 参考訳(メタデータ) (2024-04-02T04:27:54Z) - Two Heads Are Better Than One: Integrating Knowledge from Knowledge
Graphs and Large Language Models for Entity Alignment [31.70064035432789]
LLMEA(Large Language Model-enhanced Entity Alignment Framework)を提案する。
LLMEAは、知識グラフにまたがるエンティティ間の類似性を埋め込んだり、仮想の等価エンティティとの距離を編集することで、特定のエンティティの候補アライメントを識別する。
3つの公開データセットで実施された実験により、LLMEAが主要なベースラインモデルを上回ることが判明した。
論文 参考訳(メタデータ) (2024-01-30T12:41:04Z) - Few-Shot Nested Named Entity Recognition [4.8693196802491405]
本論文は,数発のネストNERタスクを研究対象とする最初の論文である。
本稿では、コンテキスト依存を学習し、ネストしたエンティティを識別するためのBiaffine-based Contrastive Learning (BCL)フレームワークを提案する。
BCLはF1スコアで1ショットと5ショットの3つのベースラインモデルを上回った。
論文 参考訳(メタデータ) (2022-12-02T03:42:23Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
ネスト現象によるジレンマを解決するために,ASACと呼ばれる新しい手法を提案する。
提案手法は,適応共有(AS)部と注意条件付きランダムフィールド(ACRF)モジュールの2つの鍵モジュールを含む。
我々のモデルは、異なるカテゴリのエンティティ間の暗黙の区別と関係をキャプチャすることで、より良いエンティティ表現を学ぶことができる。
論文 参考訳(メタデータ) (2022-11-09T09:23:56Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision(KRISSBERT$)は400万のUMLSエンティティのためのユニバーサルエンティティリンカーである。
提案手法はゼロショット法と少数ショット法を仮定し,利用可能であればエンティティ記述やゴールドレファレンスラベルを簡単に組み込むことができる。
ラベル付き情報を一切使わずに400万のUMLSエンティティのためのユニバーサルエンティティリンカである$tt KRISSBERT$を生成する。
論文 参考訳(メタデータ) (2021-12-15T05:05:12Z) - Neural Production Systems [90.75211413357577]
視覚環境は、異なるオブジェクトまたはエンティティから構成される。
イメージをエンティティに分割するために、ディープラーニング研究者は構造的誘導バイアスを提案した。
私たちは認知科学からインスピレーションを得て、一連のルールテンプレートからなる古典的なアプローチを復活させます。
このアーキテクチャは柔軟でダイナミックな制御フローを実現し、エンティティ固有およびルールベースの情報を分解するのに役立つ。
論文 参考訳(メタデータ) (2021-03-02T18:53:20Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention [37.111204321059084]
両方向変換器に基づく単語と実体の事前学習した文脈表現を提案する。
我々のモデルは、BERTのマスキング言語モデルに基づく新しい事前訓練タスクを用いて訓練される。
また,変換器の自己認識機構の拡張である自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-02T15:38:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。