AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network
for Disease Prediction
- URL: http://arxiv.org/abs/2106.08732v1
- Date: Wed, 16 Jun 2021 12:13:23 GMT
- Title: AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network
for Disease Prediction
- Authors: Hao Chen, Fuzhen Zhuang, Li Xiao, Ling Ma, Haiyan Liu, Ruifang Zhang,
Huiqin Jiang, Qing He
- Abstract summary: We propose an encoder that automatically selects the appropriate phenotypic measures according to their spatial distribution.
We also propose a novel graph convolution network architecture using multi-layer aggregation mechanism.
- Score: 20.19380805655623
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, Graph Convolutional Networks (GCNs) have proven to be a powerful
mean for Computer Aided Diagnosis (CADx). This approach requires building a
population graph to aggregate structural information, where the graph adjacency
matrix represents the relationship between nodes. Until now, this adjacency
matrix is usually defined manually based on phenotypic information. In this
paper, we propose an encoder that automatically selects the appropriate
phenotypic measures according to their spatial distribution, and uses the text
similarity awareness mechanism to calculate the edge weights between nodes. The
encoder can automatically construct the population graph using phenotypic
measures which have a positive impact on the final results, and further
realizes the fusion of multimodal information. In addition, a novel graph
convolution network architecture using multi-layer aggregation mechanism is
proposed. The structure can obtain deep structure information while suppressing
over-smooth, and increase the similarity between the same type of nodes.
Experimental results on two databases show that our method can significantly
improve the diagnostic accuracy for Autism spectrum disorder and breast cancer,
indicating its universality in leveraging multimodal data for disease
prediction.
Related papers
- MKDTI: Predicting drug-target interactions via multiple kernel fusion on graph attention network [37.40418564922425]
We formulate a model called MKDTI by extracting kernel information from various layer embeddings of a graph attention network.
We use a Dual Laplacian Regularized Least Squares framework to forecast novel drug-target entity connections.
arXiv Detail & Related papers (2024-07-14T02:53:25Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
We propose a diffusion learning framework, where the range of feature aggregation is controlled by the scale of a diffusion kernel.
Our model is tested on various standard for node-wise classification for the state-of-the-art datasets performance.
It is also validated on a real-world brain network data for graph classifications to demonstrate its practicality for Alzheimer classification.
arXiv Detail & Related papers (2024-01-22T10:57:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
We introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling.
The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges.
We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer's Disease Neuroimaging Initiative (ADNI)
arXiv Detail & Related papers (2023-11-13T14:36:29Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z) - Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction [7.6146285961466]
We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
arXiv Detail & Related papers (2020-09-06T15:53:17Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.