論文の概要: Towards Optimally Weighted Physics-Informed Neural Networks in Ocean
Modelling
- arxiv url: http://arxiv.org/abs/2106.08747v1
- Date: Wed, 16 Jun 2021 12:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:36:49.111435
- Title: Towards Optimally Weighted Physics-Informed Neural Networks in Ocean
Modelling
- Title(参考訳): 海洋モデルにおける最適重み付け物理形ニューラルネットワークに向けて
- Authors: Taco de Wolff (CIRIC), Hugo Carrillo (CIRIC), Luis Mart{\'i} (CIRIC),
Nayat Sanchez-Pi (CIRIC)
- Abstract要約: 海流と温度の流れの複雑さを捉えるモデルを開発するには最先端の技術が必要である。
本研究は,海洋モデルに関連する偏微分方程式の解法として物理インフォームドニューラルネットワーク(PINN)の利点について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The carbon pump of the world's ocean plays a vital role in the biosphere and
climate of the earth, urging improved understanding of the functions and
influences of the ocean for climate change analyses. State-of-the-art
techniques are required to develop models that can capture the complexity of
ocean currents and temperature flows. This work explores the benefits of using
physics-informed neural networks (PINNs) for solving partial differential
equations related to ocean modeling; such as the Burgers, wave, and
advection-diffusion equations. We explore the trade-offs of using data vs.
physical models in PINNs for solving partial differential equations. PINNs
account for the deviation from physical laws in order to improve learning and
generalization. We observed how the relative weight between the data and
physical model in the loss function influence training results, where small
data sets benefit more from the added physics information.
- Abstract(参考訳): 世界の海洋の炭素ポンプは、地球の生物圏と気候において重要な役割を担っており、気候変動分析のための海洋の機能と影響の理解を深めている。
海流と温度の流れの複雑さを捉えるモデルを開発するには最先端の技術が必要である。
この研究は、バーガーズ、波動、対流拡散方程式など、海洋モデリングに関連する偏微分方程式を解くために物理学インフォームドニューラルネットワーク(PINN)の利点を探求する。
偏微分方程式の解法として,pinn におけるデータと物理モデルとのトレードオフを検討する。
PINNは、学習と一般化を改善するために、物理法則から逸脱している。
損失関数におけるデータと物理モデルの相対的な重み付けがトレーニング結果にどのように影響するかを観察した。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models [2.956865819041394]
海洋プロセスはハリケーンや干ばつなどの現象に影響を与える。
理想的な海洋モデルでは、摂動パラメータアンサンブルデータと訓練された代理ニューラルネットワークモデルを生成した。
ニューラルサロゲートは1ステップの前進ダイナミクスを正確に予測し、パラメトリック感度を計算した。
論文 参考訳(メタデータ) (2023-11-10T16:37:43Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
金属添加物製造(AM)における溶融プールダイナミクスは, 印刷材料の安定性, 微細構造形成, 最終特性の処理に重要である。
本稿では,ニューラルネットワークと制御物理法則を統合した物理インフォームド機械学習(PIML)による溶融プール力学の予測を行う。
データ効率のよいPINNモデルは、制御偏微分方程式(PDE)、初期条件、PINNモデルの境界条件を組み込むことによって、ソフトペナルティに起因している。
論文 参考訳(メタデータ) (2023-07-23T12:12:44Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Physics-informed deep-learning applications to experimental fluid
mechanics [2.992602379681373]
低分解能および雑音測定による流れ場データの高分解能再構成は実験流体力学において重要である。
ディープラーニングのアプローチは、このような超高解像度なタスクに適していることが示されている。
本研究では,物理インフォームドニューラルネットワーク(PINN)を時間空間における流れ場データの超解像に適用する。
論文 参考訳(メタデータ) (2022-03-29T09:58:30Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
本稿では、ニューラルネットワークと進化的最適化を組み合わせたパシモニクスニューラルネットワーク(PNN)を提案し、精度とパシモニクスのバランスをとるモデルを求める。
アプローチのパワーと汎用性は、古典力学のモデルを開発し、基本特性から材料の融解温度を予測することによって実証される。
論文 参考訳(メタデータ) (2020-05-08T16:15:47Z) - Turbulence Enrichment using Physics-informed Generative Adversarial
Networks [0.0]
我々は乱流生成法を開発した。
損失関数の修正による物理インフォームド・ラーニング・アプローチを取り入れた。
物理インフォームドラーニングを用いることで、物理支配方程式を満たすデータを生成する際のモデルの能力が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-03-04T06:14:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。