論文の概要: Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport
- arxiv url: http://arxiv.org/abs/2506.22204v1
- Date: Fri, 27 Jun 2025 13:23:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.210235
- Title: Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport
- Title(参考訳): 不完全物理のためのハイブリッド生成モデル:Deep Grey-Boxが最適輸送を実現する
- Authors: Gurjeet Sangra Singh, Maciej Falkiewicz, Alexandros Kalousis,
- Abstract要約: 多くの実世界の系は、方程式の欠落や未知の項にのみ記述される。
これにより、物理モデルの分布は真のデータ生成過程(DGP)とは異なる。
非完全物理モデルを強化するために, 深層グレーボックスモデルと最適輸送法を組み合わせた新しいハイブリッド生成モデルを提案する。
- 参考スコア(独自算出の注目度): 48.06072022424773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics phenomena are often described by ordinary and/or partial differential equations (ODEs/PDEs), and solved analytically or numerically. Unfortunately, many real-world systems are described only approximately with missing or unknown terms in the equations. This makes the distribution of the physics model differ from the true data-generating process (DGP). Using limited and unpaired data between DGP observations and the imperfect model simulations, we investigate this particular setting by completing the known-physics model, combining theory-driven models and data-driven to describe the shifted distribution involved in the DGP. We present a novel hybrid generative model approach combining deep grey-box modelling with Optimal Transport (OT) methods to enhance incomplete physics models. Our method implements OT maps in data space while maintaining minimal source distribution distortion, demonstrating superior performance in resolving the unpaired problem and ensuring correct usage of physics parameters. Unlike black-box alternatives, our approach leverages physics-based inductive biases to accurately learn system dynamics while preserving interpretability through its domain knowledge foundation. Experimental results validate our method's effectiveness in both generation tasks and model transparency, offering detailed insights into learned physics dynamics.
- Abstract(参考訳): 物理現象は、通常および/または偏微分方程式(ODE/PDE)によって記述され、解析的または数値的に解決される。
残念なことに、多くの実世界のシステムは方程式の欠落や未知の項でのみ記述される。
これにより、物理モデルの分布は真のデータ生成過程(DGP)とは異なる。
DGP観測と不完全モデルシミュレーションの限定的・不完全データを用いて、理論駆動モデルとデータ駆動モデルを組み合わせて、DGPに関係するシフト分布を記述することで、この特定の設定について検討する。
非完全物理モデルを強化するために, 深層グレーボックスモデルと最適輸送法を組み合わせた新しいハイブリッド生成モデルを提案する。
提案手法は,データ空間内のOTマップを最小限のソース分散歪みを維持しつつ実装し,未解決問題の解決や物理パラメータの正確な利用の確保に優れた性能を示す。
ブラックボックスの代替手法とは異なり、我々のアプローチは物理に基づく帰納バイアスを利用してシステムダイナミクスを正確に学習し、ドメイン知識基盤を通じて解釈可能性を維持する。
実験結果は,生成タスクとモデル透過性の両方において,本手法の有効性を検証し,学習物理力学の詳細な知見を提供する。
関連論文リスト
- SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
等変性を維持しながら, 2階連続性をGNNに組み込む方法を示す。
また、SEGNOに関する理論的知見も提供し、隣接する状態間の一意の軌跡を学習できることを強調している。
我々のモデルは最先端のベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-08-25T07:15:58Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
微分方程式(SDE)によって制御される物理系に対する新しいグレーボックスモデリングアルゴリズムを提案する。
提案手法はDeep Physics Corrector(DPC)と呼ばれ、SDEとDeep Neural Network(DNN)で表される近似物理学をブレンドする。
本論文では,本論文の4つのベンチマーク例について,提案したDPCの性能について述べる。
論文 参考訳(メタデータ) (2022-09-20T14:30:07Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach [0.0]
デジタル双生児、自律型、人工知能システムは正確で解釈可能で、計算効率が高く、一般化可能なモデルを必要とする。
物理に基づくモデリングとデータ駆動モデリングを組み合わせたハイブリッドアプローチが、両方のモデルを上回る結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-06-07T17:10:58Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。