論文の概要: Multilinear Dirichlet Processes
- arxiv url: http://arxiv.org/abs/2106.08852v1
- Date: Wed, 16 Jun 2021 15:18:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-17 17:15:16.693225
- Title: Multilinear Dirichlet Processes
- Title(参考訳): 多線形ディリクレ過程
- Authors: Xiaoli Li
- Abstract要約: 本稿では,DDPを構築するための新しい手法であるMultiLinear Dirichlet Processes (MLDP)を提案する。
我々は,様々なアプリケーションを対象とした実単語データセット上でMLDPを評価し,最先端の性能を実現した。
- 参考スコア(独自算出の注目度): 3.2238887070637805
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dependent Dirichlet processes (DDP) have been widely applied to model data
from distributions over collections of measures which are correlated in some
way. On the other hand, in recent years, increasing research efforts in machine
learning and data mining have been dedicated to dealing with data involving
interactions from two or more factors. However, few researchers have addressed
the heterogeneous relationship in data brought by modulation of multiple
factors using techniques of DDP. In this paper, we propose a novel technique,
MultiLinear Dirichlet Processes (MLDP), to constructing DDPs by combining DP
with a state-of-the-art factor analysis technique, multilinear factor analyzers
(MLFA). We have evaluated MLDP on real-word data sets for different
applications and have achieved state-of-the-art performance.
- Abstract(参考訳): 依存ディリクレプロセス(DDP)は、何らかの方法で相関する尺度の集合上の分布からのデータモデルに広く応用されている。
一方で、近年では、機械学習とデータマイニングの研究活動の増大が、2つ以上の要因によるインタラクションに関わるデータを扱うことに重点が置かれている。
しかし、ddpの手法を用いて複数の因子の変調によってもたらされるデータの不均質な関係に対処した研究者はほとんどいない。
本稿では,DPと最先端因子分析技術,マルチ線形因子解析器(MLFA)を組み合わせてDDPを構築するための新しい手法であるMultiLinear Dirichlet Processes (MLDP)を提案する。
我々は,様々なアプリケーションを対象とした実単語データセット上でMLDPを評価し,最先端の性能を実現した。
関連論文リスト
- Data Processing Techniques for Modern Multimodal Models [9.177400969158377]
本稿では,現代のマルチモーダルモデルトレーニングで使用される共通データ処理技術について概観する。
すべてのテクニックを、データ品質、データ量、データ分散、データ安全性の4つのカテゴリにまとめました。
論文 参考訳(メタデータ) (2024-07-27T05:39:37Z) - Sparse outlier-robust PCA for multi-source data [2.3226893628361687]
そこで本研究では,重要な特徴と局所的なソース固有パターンを同時に選択する新しいPCA手法を提案する。
我々は,グローバルな局所構造的空間パターンに対応するペナルティを持つ正規化問題を開発する。
本稿では,乗算器の交互方向法による提案手法の効率的な実装について述べる。
論文 参考訳(メタデータ) (2024-07-23T08:55:03Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
文脈決定プロセス(CMDP)は、遷移カーネルと報酬関数がコンテキスト変数によってインデックス付けされた異なるMDPで時間とともに変化できる強化学習のクラスを記述する。
CMDPは、時間とともに変化する環境で多くの現実世界のアプリケーションをモデル化するための重要なフレームワークとして機能する。
CMDPを2つの線形関数近似モデルで検討する: 文脈変化表現とすべての文脈に対する共通線形重み付きモデルIと、すべての文脈に対する共通表現と文脈変化線形重み付きモデルIIである。
論文 参考訳(メタデータ) (2024-02-05T03:25:04Z) - Enhancing Deep Learning Models through Tensorization: A Comprehensive
Survey and Framework [0.0]
本稿では,多次元データソース,様々なマルチウェイ解析手法,およびこれらの手法の利点について考察する。
2次元アルゴリズムとPythonのマルチウェイアルゴリズムを比較したBlind Source separation(BSS)の小さな例を示す。
その結果,マルチウェイ解析の方が表現力が高いことが示唆された。
論文 参考訳(メタデータ) (2023-09-05T17:56:22Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) は、トランスフォーマーのバックボーンを組み込んだ拡散に基づく手法であり、生成計画とデータ合成のための素早い学習を行う。
生成計画において、textscMTDiffはMeta-World上の50のタスクとMaze2D上の8のマップで最先端のアルゴリズムより優れています。
論文 参考訳(メタデータ) (2023-05-29T05:20:38Z) - Quantifying & Modeling Multimodal Interactions: An Information
Decomposition Framework [89.8609061423685]
本稿では,入力モーダル性と出力タスクを関連付けた冗長性,特異性,シナジーの度合いを定量化する情報理論手法を提案する。
PID推定を検証するために、PIDが知られている合成データセットと大規模マルチモーダルベンチマークの両方で広範な実験を行う。
本研究では,(1)マルチモーダルデータセット内の相互作用の定量化,(2)マルチモーダルモデルで捉えた相互作用の定量化,(3)モデル選択の原理的アプローチ,(4)実世界のケーススタディの3つにその有用性を示す。
論文 参考訳(メタデータ) (2023-02-23T18:59:05Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Learning Inter- and Intra-manifolds for Matrix Factorization-based
Multi-Aspect Data Clustering [3.756550107432323]
近年,マルチビューやマルチタイプリレーショナルデータなど,複数の側面を持つデータのクラスタリングが普及している。
我々は,データクラスタリングのための多種多様な多様体を学習するために,異なるデータ型(またはビュー)のデータポイントの距離情報を利用するNMFフレームワークに多様体を組み込むことを提案する。
いくつかのデータセットの結果から,提案手法は精度と効率の両面において,最先端のマルチアスペクトデータクラスタリング手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-07T02:21:08Z) - Physically interpretable machine learning algorithm on multidimensional
non-linear fields [0.0]
PCE(Polynomial Chaos Expansion)は、確率的入出力マッピングの堅牢な表現として長年使われてきた。
パターン認識やデータ圧縮にDR技術がますます使われている。
本研究の目的は,PODとPCEを組み合わせてフィールド計測に基づく予測を行うことである。
論文 参考訳(メタデータ) (2020-05-28T11:26:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。