Quantum CDMA Communication Systems
- URL: http://arxiv.org/abs/2106.10028v1
- Date: Fri, 18 Jun 2021 10:05:53 GMT
- Title: Quantum CDMA Communication Systems
- Authors: Mohammad Rezai and Jawad A. Salehi
- Abstract summary: We introduce and discuss the fundamental principles of a novel quantum CDMA technique based on spectrally encoding and decoding of continuous-mode quantum light pulses.
We present the mathematical models of various QCDMA modules that are fundamental in describing an ideal and typical QCDMA system.
Our mathematical model is valuable in the signal design and data modulations of point-to-point quantum communications, quantum pulse shaping, and quantum radar signals and systems where the inputs are continuous mode quantum signals.
- Score: 9.992810060555813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Barcoding photons can provide a host of functionalities that could benefit
future quantum communication systems and networks beyond today's imagination.
As a significant application of barcoding photons, we introduce code division
multiple-access (CDMA) communication systems for various applications. In this
context, we introduce and discuss the fundamental principles of a novel quantum
CDMA (QCDMA) technique based on spectrally encoding and decoding of
continuous-mode quantum light pulses. In particular, we present the
mathematical models of various QCDMA modules that are fundamental in describing
an ideal and typical QCDMA system, such as quantum signal sources, quantum
spectral encoding phase operators, M$\times$M quantum broadcasting
star-coupler, quantum spectral phase decoding operators, and the quantum
receivers. In describing a QCDMA system, this paper considers a unified
approach where the input continuous-mode quantum light pulses can take on any
form of pure states such as Glauber states and quantum number states. For input
number states, one can observe features like entanglement and quantum
interference. More interestingly, due to Heisenberg's uncertainty principle,
the quantum signals sent by photon number states obtain complete phase
uncertainty at the time of measurement. Therefore, at the receiver output, the
multiaccess inter-signal interference vanishes. Due to Heisenberg's uncertainty
principle, the received signal intensity at the photodetector's output changes
from a coherent detection scheme for input Glauber states to an incoherent
detection scheme for input number states. Our mathematical model is valuable in
the signal design and data modulations of point-to-point quantum
communications, quantum pulse shaping, and quantum radar signals and systems
where the inputs are continuous mode quantum signals.
Related papers
- Quantum Spread-Spectrum CDMA Communication Systems: Mathematical Foundations [5.111464147491706]
This paper describes the fundamental principles and mathematical foundations of quantum spread spectrum code division multiple access (QCDMA) communication systems.
We show that by employing coherent states as the transmitted quantum signals, the inter-user interference appears as an additive term in the magnitude of the output coherent.
We show that if the transmitters utilize particle-like quantum signals (Fock states), entanglement and a spread spectrum version of the Hong-Ou-Mandel effect can arise at the receivers.
arXiv Detail & Related papers (2024-10-28T18:52:54Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - Quantum Enhancement in Dark Matter Detection with Quantum Computation [0.0]
We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection experiments.
We show that the signal rate scales proportionally to $n_rm q2$, with $n_rm q$ being the number of sensor qubits.
In the dark matter detection with a substantial number of sensor qubits, a significant increase in the signal rate can be expected.
arXiv Detail & Related papers (2023-11-17T09:36:14Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Characterization of Quantum Frequency Processors [0.0]
Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications.
The quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components.
arXiv Detail & Related papers (2023-02-03T02:08:07Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Steering of Quantum Walks through Coherent Control of High-dimensional
Bi-photon Quantum Frequency Combs with Tunable State Entropies [0.0]
We generate high-dimensional quantum photonic states with tunable entropies from periodically poled lithium niobate waveguides.
These states can be an excellent testbed for several quantum computation and communication protocols in nonideal scenarios.
arXiv Detail & Related papers (2022-10-12T15:14:19Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.