Quantum Spread-Spectrum CDMA Communication Systems: Mathematical Foundations
- URL: http://arxiv.org/abs/2410.21450v1
- Date: Mon, 28 Oct 2024 18:52:54 GMT
- Title: Quantum Spread-Spectrum CDMA Communication Systems: Mathematical Foundations
- Authors: Mohammad Amir Dastgheib, Jawad A. Salehi, Mohammad Rezai,
- Abstract summary: This paper describes the fundamental principles and mathematical foundations of quantum spread spectrum code division multiple access (QCDMA) communication systems.
We show that by employing coherent states as the transmitted quantum signals, the inter-user interference appears as an additive term in the magnitude of the output coherent.
We show that if the transmitters utilize particle-like quantum signals (Fock states), entanglement and a spread spectrum version of the Hong-Ou-Mandel effect can arise at the receivers.
- Score: 5.111464147491706
- License:
- Abstract: This paper describes the fundamental principles and mathematical foundations of quantum spread spectrum code division multiple access (QCDMA) communication systems. The evolution of quantum signals through the direct-sequence spread spectrum multiple access communication system is carefully characterized by a novel approach called the decomposition of creation operators. In this methodology, the creation operator of the transmitted quantum signal is decomposed into the chip-time interval creation operators each of which is defined over the duration of a chip. These chip-time interval creation operators are the invariant building blocks of the spread spectrum quantum communication systems. With the aid of the proposed chip-time decomposition approach, we can find closed-form relations for quantum signals at the receiver of such a quantum communication system. Further, the paper details the principles of narrow-band filtering of quantum signals required at the receiver, a crucial step in designing and analyzing quantum communication systems. We show that by employing coherent states as the transmitted quantum signals, the inter-user interference appears as an additive term in the magnitude of the output coherent (Glauber) state, and the output of the quantum communication system is a pure quantum signal. On the other hand, if the transmitters utilize particle-like quantum signals (Fock states) such as single photon states, entanglement and a spread spectrum version of the Hong-Ou-Mandel effect can arise at the receivers. The important techniques developed in this paper are expected to have far-reaching implications for various applications in the exciting field of quantum communication and signal processing.
Related papers
- Physical Layer Aspects of Quantum Communications: A Survey [31.406787669796184]
Quantum communication systems support unique applications in the form of distributed quantum computing, distributed quantum sensing, and several cryptographic protocols.
Main enabler in these communication systems is an efficient infrastructure that is capable to transport unknown quantum states with high rate and fidelity.
Despite the fundamental differences between the classic and quantum worlds, there exist universal communication concepts that may proven beneficial in quantum communication systems as well.
arXiv Detail & Related papers (2024-07-12T13:16:47Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Characterization of Quantum Frequency Processors [0.0]
Frequency-bin qubits possess unique synergies with wavelength-multiplexed lightwave communications.
The quantum frequency processor (QFP) provides a scalable path for gate synthesis leveraging standard telecom components.
arXiv Detail & Related papers (2023-02-03T02:08:07Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum CDMA Communication Systems [9.992810060555813]
We introduce and discuss the fundamental principles of a novel quantum CDMA technique based on spectrally encoding and decoding of continuous-mode quantum light pulses.
We present the mathematical models of various QCDMA modules that are fundamental in describing an ideal and typical QCDMA system.
Our mathematical model is valuable in the signal design and data modulations of point-to-point quantum communications, quantum pulse shaping, and quantum radar signals and systems where the inputs are continuous mode quantum signals.
arXiv Detail & Related papers (2021-06-18T10:05:53Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Two-way covert quantum communication in the microwave regime [0.0]
Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
arXiv Detail & Related papers (2020-04-15T16:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.