Periodically-driven quantum thermal machines from warming up to limit
cycle
- URL: http://arxiv.org/abs/2106.10594v2
- Date: Tue, 22 Jun 2021 01:22:33 GMT
- Title: Periodically-driven quantum thermal machines from warming up to limit
cycle
- Authors: Junjie Liu and Kenneth A. Jung and Dvira Segal
- Abstract summary: Theoretical treatments of periodically-driven quantum thermal machines (PD-QTMs) are largely focused on the limit-cycle stage of operation.
We present a general thermodynamic framework that can handle the performance of PD-QTMs both before and during the limit-cycle stage of operation.
- Score: 5.258079114494524
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Theoretical treatments of periodically-driven quantum thermal machines
(PD-QTMs) are largely focused on the limit-cycle stage of operation
characterized by a periodic state of the system. Yet, this regime is not
immediately accessible for experimental verification. Here, we present a
general thermodynamic framework that can handle the performance of PD-QTMs both
before and during the limit-cycle stage of operation. It is achieved by
observing that periodicity may break down at the ensemble average level, even
in the limit-cycle phase. With this observation, and using conventional
thermodynamic expressions for work and heat, we find that a complete
description of the first law of thermodynamics for PD-QTMs requires a new
contribution, which vanishes only in the limit-cycle phase under rather weak
system-bath couplings. Significantly, this contribution is substantial at
strong couplings even at limit cycle, thus largely affecting the behavior of
the thermodynamic efficiency. We demonstrate our framework by simulating a
quantum Otto engine building upon a driven resonant level model. Our results
provide new insights towards a complete description of PD-QTMs, from turn-on to
the limit-cycle stage and, particularly, shed light on the development of
quantum thermodynamics at strong coupling.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Quantum thermodynamics with fast driving and strong coupling via the mesoscopic leads approach [0.0]
Understanding the thermodynamics of driven quantum systems strongly coupled to thermal baths is a central focus of quantum thermodynamics and mesoscopic physics.
The mesoscopic leads approach was recently generalised to steady state thermal machines and has the ability to replicate Landauer B"uttiker theory in the non-interacting limit.
arXiv Detail & Related papers (2022-06-02T15:15:59Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Non-equilibrium thermodynamics of quantum processes assisted by
transitionless quantum driving: the role of initial state preparation [0.0]
We study the effects of transitionless quantum driving (TQD) on a single-qubit system subjected to a changing magnetic field.
We identify the states that extremize performance under the TQD protocol.
arXiv Detail & Related papers (2020-02-14T17:35:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.