Confidence-Guided Radiology Report Generation
- URL: http://arxiv.org/abs/2106.10887v2
- Date: Tue, 22 Jun 2021 01:53:55 GMT
- Title: Confidence-Guided Radiology Report Generation
- Authors: Yixin Wang, Zihao Lin, Jiang Tian, Zhongchao Shi, Yang Zhang, Jianping
Fan, Zhiqiang He
- Abstract summary: We propose a novel method to quantify both the visual uncertainty and the textual uncertainty for the task of radiology report generation.
Our experimental results have demonstrated that our proposed method for model uncertainty characterization and estimation can provide more reliable confidence scores for radiology report generation.
- Score: 24.714303916431078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical imaging plays a pivotal role in diagnosis and treatment in clinical
practice. Inspired by the significant progress in automatic image captioning,
various deep learning (DL)-based architectures have been proposed for
generating radiology reports for medical images. However, model uncertainty
(i.e., model reliability/confidence on report generation) is still an
under-explored problem. In this paper, we propose a novel method to explicitly
quantify both the visual uncertainty and the textual uncertainty for the task
of radiology report generation. Such multi-modal uncertainties can sufficiently
capture the model confidence scores at both the report-level and the
sentence-level, and thus they are further leveraged to weight the losses for
achieving more comprehensive model optimization. Our experimental results have
demonstrated that our proposed method for model uncertainty characterization
and estimation can provide more reliable confidence scores for radiology report
generation, and our proposed uncertainty-weighted losses can achieve more
comprehensive model optimization and result in state-of-the-art performance on
a public radiology report dataset.
Related papers
- Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
This study presents an uncertainty-aware stacked neural networks model for the reliable classification of COVID-19 from radiological images.
The model addresses the critical gap in uncertainty-aware modeling by focusing on accurately identifying confidently correct predictions.
The architecture integrates uncertainty quantification methods, including Monte Carlo dropout and ensemble techniques, to enhance predictive reliability.
arXiv Detail & Related papers (2024-09-19T04:20:12Z) - TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model [22.305034251561835]
We propose a truthful radiology report generation framework, namely TRRG, based on stage-wise training for cross-modal disease clue injection into large language models.
Our proposed framework achieves state-of-the-art performance in radiology report generation on datasets such as IU-Xray and MIMIC-CXR.
arXiv Detail & Related papers (2024-08-22T05:52:27Z) - Deep Evidential Learning for Radiotherapy Dose Prediction [0.0]
We present a novel application of an uncertainty-quantification framework called Deep Evidential Learning in the domain of radiotherapy dose prediction.
We found that this model can be effectively harnessed to yield uncertainty estimates that inherited correlations with prediction errors upon completion of network training.
arXiv Detail & Related papers (2024-04-26T02:43:45Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
Ensemble deep learning has been shown to achieve high predictive accuracy and uncertainty estimation.
perturbations in the input images at test time can still lead to significant performance degradation.
LaDiNE is a novel and robust probabilistic method that is capable of inferring informative and invariant latent variables from the input images.
arXiv Detail & Related papers (2023-10-24T15:53:07Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.