論文の概要: Attribute Selection using Contranominal Scales
- arxiv url: http://arxiv.org/abs/2106.10978v1
- Date: Mon, 21 Jun 2021 10:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 15:54:51.328192
- Title: Attribute Selection using Contranominal Scales
- Title(参考訳): 対数尺度を用いた属性選択
- Authors: Dominik D\"urrschnabel, Maren Koyda, Gerd Stumme
- Abstract要約: 形式的概念分析(FCA)は、概念を導出して格子に並べることでバイナリデータを解析することができる。
そのような格子の大きさは、対応する形式的文脈におけるサブコンテキストの数に依存する。
本稿では,与えられた形式的文脈のすべての対数スケールの計算を可能にするアルゴリズムであるContraFinderを提案する。
- 参考スコア(独自算出の注目度): 0.09668407688201358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formal Concept Analysis (FCA) allows to analyze binary data by deriving
concepts and ordering them in lattices. One of the main goals of FCA is to
enable humans to comprehend the information that is encapsulated in the data;
however, the large size of concept lattices is a limiting factor for the
feasibility of understanding the underlying structural properties. The size of
such a lattice depends on the number of subcontexts in the corresponding formal
context that are isomorphic to a contranominal scale of high dimension. In this
work, we propose the algorithm ContraFinder that enables the computation of all
contranominal scales of a given formal context. Leveraging this algorithm, we
introduce delta-adjusting, a novel approach in order to decrease the number of
contranominal scales in a formal context by the selection of an appropriate
attribute subset. We demonstrate that delta-adjusting a context reduces the
size of the hereby emerging sub-semilattice and that the implication set is
restricted to meaningful implications. This is evaluated with respect to its
associated knowledge by means of a classification task. Hence, our proposed
technique strongly improves understandability while preserving important
conceptual structures.
- Abstract(参考訳): 形式的概念分析(FCA)は、概念を導出して格子に並べることでバイナリデータを解析することができる。
FCAの主な目的の1つは、人間がデータにカプセル化されている情報を理解できるようにすることである。
そのような格子の大きさは、高次元の対数スケールに同型である対応する形式的文脈における部分文脈の数に依存する。
本研究では,与えられた形式的文脈のすべての対数スケールの計算を可能にするアルゴリズムであるcontrafinderを提案する。
このアルゴリズムを応用して、適切な属性サブセットの選択により、形式的文脈における対数スケールの数を減少させる新しいアプローチであるデルタ調整を導入する。
コンテキストのデルタ調整は、出現するサブセミ格子のサイズを小さくし、含意集合が意味のある意味に制限されることを実証する。
これは分類タスクによって関連する知識について評価される。
したがって,提案手法は重要な概念構造を保ちながら理解性を強く向上させる。
関連論文リスト
- Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
論文 参考訳(メタデータ) (2024-05-12T22:18:25Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
本稿では,嘉心表現の原理に基づくデータ量子化アルゴリズムを提案する。
以上の結果から, カシ量子化はモデル性能の競争力や優れた品質を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-04-15T12:38:46Z) - Counterfactual Explanations for Graph Classification Through the Lenses
of Density [19.53018353016675]
グラフ分類器のインスタンスレベルの反実例記述を生成するための一般密度に基づく反実例探索フレームワークを定義する。
この一般的なフレームワークでは,三角形の開きあるいは閉きによる反実数グラフの探索法と,最大傾きによって駆動される方法の2つの具体的インスタンス化を示す。
提案手法の有効性を7つの脳ネットワークデータセットで評価し, 広く利用されている指標に基づいて生成した偽事実を比較検討した。
論文 参考訳(メタデータ) (2023-07-27T13:28:18Z) - From Robustness to Explainability and Back Again [0.685316573653194]
本稿では,形式的説明可能性のスケーラビリティの限界に対処し,形式的説明性を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは、その代わりに多数のロバストネスクエリに応答して説明を計算し、そのようなクエリの数は、機能数に対して最も線形である。
提案手法の有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2023-06-05T17:21:05Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
反復的洗練は表現学習に有用なパラダイムである。
トレーニングの安定性とトラクタビリティを向上させる暗黙の差別化アプローチを開発する。
論文 参考訳(メタデータ) (2022-07-02T10:00:35Z) - Quantification and Aggregation over Concepts of the Ontology [0.0]
いくつかのKRアプリケーションでは、ボキャブラリのシンボルによって形式的に表される概念の集合を定量化したいと論じる。
本稿では,このような抽象化をサポートする一階述語論理の拡張について述べる。
論文 参考訳(メタデータ) (2022-02-02T07:49:23Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Generalising Recursive Neural Models by Tensor Decomposition [12.069862650316262]
テンソル型定式化を利用した構造文脈のモデルアグリゲーションに対する一般的なアプローチを提案する。
パラメータ空間の大きさの指数関数的成長は、タッカー分解に基づく近似によって制御できることを示す。
これにより、隠れたサイズ、計算複雑性、モデル一般化によって制御される符号化の表現性の間のトレードオフを効果的に制御できる。
論文 参考訳(メタデータ) (2020-06-17T17:28:19Z) - Learning Discrete Structured Representations by Adversarially Maximizing
Mutual Information [39.87273353895564]
本研究では、構造化潜在変数と対象変数の相互情報を最大化することにより、ラベルのないデータから離散的構造化表現を学習する。
我々の重要な技術的貢献は、クロスエントロピー計算の実現可能性のみを前提として、相互情報を的確に見積もることができる敵の目的である。
文書ハッシュに本モデルを適用し,離散およびベクトル量子化変分オートエンコーダに基づいて,現在の最良ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-04-08T13:31:53Z) - A General Framework for Consistent Structured Prediction with Implicit
Loss Embeddings [113.15416137912399]
構造化予測のための理論的・アルゴリズム的な枠組みを提案し,解析する。
問題に対して適切な幾何を暗黙的に定義する、損失関数の大規模なクラスについて検討する。
出力空間を無限の濃度で扱うとき、推定子の適切な暗黙の定式化が重要であることが示される。
論文 参考訳(メタデータ) (2020-02-13T10:30:04Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
特徴相互作用の効率的なモデリングは、非順序的タスクに対する教師あり学習の基盤となる。
この問題を緩和するため、モデルパラメータをテンソルとして暗黙的に表現することが提案されている。
表現性を向上するため,任意の高次元特徴ベクトルに特徴写像を適用できるようにフレームワークを一般化する。
論文 参考訳(メタデータ) (2020-01-27T22:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。