論文の概要: Quantification and Aggregation over Concepts of the Ontology
- arxiv url: http://arxiv.org/abs/2202.00898v4
- Date: Wed, 30 Aug 2023 09:06:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 18:23:26.713895
- Title: Quantification and Aggregation over Concepts of the Ontology
- Title(参考訳): オントロジーの概念の定量化と集約
- Authors: Pierre Carbonnelle (KU Leuven, Leuven, Belgium), Matthias Van der
Hallen (KU Leuven, Leuven, Belgium), Marc Denecker (KU Leuven, Leuven,
Belgium)
- Abstract要約: いくつかのKRアプリケーションでは、ボキャブラリのシンボルによって形式的に表される概念の集合を定量化したいと論じる。
本稿では,このような抽象化をサポートする一階述語論理の拡張について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We argue that in some KR applications, we want to quantify over sets of
concepts formally represented by symbols in the vocabulary. We show that this
quantification should be distinguished from second-order quantification and
meta-programming quantification. We also investigate the relationship with
concepts in intensional logic.
We present an extension of first-order logic to support such abstractions,
and show that it allows writing expressions of knowledge that are elaboration
tolerant. To avoid nonsensical sentences in this formalism, we refine the
concept of well-formed sentences, and propose a method to verify
well-formedness with a complexity that is linear with the number of tokens in
the formula.
We have extended FO(.), a Knowledge Representation language, and IDP-Z3, a
reasoning engine for FO(.), accordingly. We show that this extension was
essential in accurately modelling various problem domains in an
elaboration-tolerant way, i.e., without reification.
- Abstract(参考訳): いくつかのKRアプリケーションでは、ボキャブラリのシンボルによって形式的に表される概念の集合を定量化したいと論じる。
この定量化は、二次量子化とメタプログラミング量子化とを区別すべきである。
また,インテンテンション論理における概念との関係についても検討する。
我々は,そのような抽象化をサポートするための一階述語論理の拡張を提示する。
この定式化における非意味的な文を避けるため, 整形文の概念を洗練させ, 式中のトークン数と線形な複雑性で整形性を検証する手法を提案する。
我々は、知識表現言語であるFO(.)と、FO(.)の推論エンジンであるIDP-Z3を拡張した。
この拡張は、様々な問題領域を再現性のある方法で正確にモデル化する上で必要であることを示す。
関連論文リスト
- The Foundations of Tokenization: Statistical and Computational Concerns [51.370165245628975]
トークン化は、NLPパイプラインにおける重要なステップである。
NLPにおける標準表現法としての重要性は認識されているが、トークン化の理論的基盤はまだ完全には理解されていない。
本稿では,トークン化モデルの表現と解析のための統一的な形式的枠組みを提案することによって,この理論的ギャップに対処することに貢献している。
論文 参考訳(メタデータ) (2024-07-16T11:12:28Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - A Unified View on Forgetting and Strong Equivalence Notions in Answer
Set Programming [14.342696862884704]
文献からすべての関連概念を捉えることができる新しい相対同値概念を導入する。
次に、プロジェクションと(SP)鍛造の緩和を組み合わせた演算子を導入し、相対化単純化を求める。
論文 参考訳(メタデータ) (2023-12-13T09:05:48Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
我々は決定可能性を達成するために新しい意味論的アプローチを用いる。
具体的には、知識の論理S5$_n$と(知識)可換性と呼ばれる相互作用公理を拡大する。
我々は,本フレームワークが,独立した知識である共通知識の有限的非固定点的特徴を認めていることを証明した。
論文 参考訳(メタデータ) (2023-07-28T11:26:26Z) - Enriching Disentanglement: From Logical Definitions to Quantitative Metrics [59.12308034729482]
複雑なデータにおける説明的要素を遠ざけることは、データ効率の表現学習にとって有望なアプローチである。
論理的定義と量的指標の関連性を確立し, 理論的に根ざした絡み合いの指標を導出する。
本研究では,非交叉表現の異なる側面を分離することにより,提案手法の有効性を実証的に実証する。
論文 参考訳(メタデータ) (2023-05-19T08:22:23Z) - Dual Box Embeddings for the Description Logic EL++ [16.70961576041243]
知識グラフ(KG)と同様に、知識グラフはしばしば不完全であり、それらの維持と構築は困難であることが証明された。
KGsと同様に、有望なアプローチは、潜在ベクトル空間への埋め込みを学習し、基礎となるDLのセマンティクスに固執することである。
そこで本研究では,概念と役割をボックスとして表現した,DL EL++用のBox$2$ELという新しいオントロジー埋め込み手法を提案する。
論文 参考訳(メタデータ) (2023-01-26T14:13:37Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Attribute Selection using Contranominal Scales [0.09668407688201358]
形式的概念分析(FCA)は、概念を導出して格子に並べることでバイナリデータを解析することができる。
そのような格子の大きさは、対応する形式的文脈におけるサブコンテキストの数に依存する。
本稿では,与えられた形式的文脈のすべての対数スケールの計算を可能にするアルゴリズムであるContraFinderを提案する。
論文 参考訳(メタデータ) (2021-06-21T10:53:50Z) - Reasoning with Contextual Knowledge and Influence Diagrams [4.111899441919165]
インフルエンス・ダイアグラム(英語版)(ID)は、不確実性の下で決定状況をモデル化するためにベイズ的ネットワークを拡張するよく知られた形式主義である。
このような制限を克服するために、IDと軽量記述論理(DL)ELを補完する。
論文 参考訳(メタデータ) (2020-07-01T15:57:48Z) - Plausible Reasoning about EL-Ontologies using Concept Interpolation [27.314325986689752]
本稿では,モデル理論の明確な意味論に基づく帰納的機構を提案する。
我々は、カテゴリーベース誘導の認知モデルと密接に関連している強力なコモンセンス推論機構である推論に焦点を当てた。
論文 参考訳(メタデータ) (2020-06-25T14:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。