論文の概要: Scientific multi-agent reinforcement learning for wall-models of
turbulent flows
- arxiv url: http://arxiv.org/abs/2106.11144v1
- Date: Mon, 21 Jun 2021 14:30:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-22 20:59:46.350710
- Title: Scientific multi-agent reinforcement learning for wall-models of
turbulent flows
- Title(参考訳): 乱流の壁模型の科学的多エージェント強化学習
- Authors: H. Jane Bae, Petros Koumoutsakos
- Abstract要約: 大規模シミュレーションのための壁モデル発見のための科学的マルチエージェント強化学習(SciMARL)を紹介する。
現在のシミュレーションは、完全に解決されたシミュレーションよりも数桁の計算コストを削減している。
- 参考スコア(独自算出の注目度): 5.678337324555036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The predictive capabilities of turbulent flow simulations, critical for
aerodynamic design and weather prediction, hinge on the choice of turbulence
models. The abundance of data from experiments and simulations and the advent
of machine learning have provided a boost to these modeling efforts. However,
simulations of turbulent flows remain hindered by the inability of heuristics
and supervised learning to model the near-wall dynamics. We address this
challenge by introducing scientific multi-agent reinforcement learning
(SciMARL) for the discovery of wall models for large-eddy simulations (LES). In
SciMARL, discretization points act also as cooperating agents that learn to
supply the LES closure model. The agents self-learn using limited data and
generalize to extreme Reynolds numbers and previously unseen geometries. The
present simulations reduce by several orders of magnitude the computational
cost over fully-resolved simulations while reproducing key flow quantities. We
believe that SciMARL creates new capabilities for the simulation of turbulent
flows.
- Abstract(参考訳): 空力設計と天気予報に重要な乱流シミュレーションの予測能力は、乱流モデルの選択に対するヒンジである。
実験やシミュレーションからのデータの豊富さと機械学習の出現は、これらのモデリング努力を後押ししている。
しかし, 乱流のシミュレーションは, ヒューリスティックスや教師付き学習が不可能なため, 壁近傍の力学をモデル化できないままである。
大規模シミュレーション(LES)のための壁モデル発見のために,科学的なマルチエージェント強化学習(SciMARL)を導入することで,この問題に対処する。
SciMARLでは、離散化ポイントはLESクロージャモデルの提供を学ぶ協調エージェントとしても機能する。
エージェントは制限されたデータを使って自己学習し、極値レイノルズ数と以前には見つからなかったジオメトリに一般化する。
本シミュレーションは,鍵フロー量を再現しながら,完全解決シミュレーションよりも計算コストを数桁削減する。
我々は,SciMARLが乱流シミュレーションの新たな能力を生み出すと考えている。
関連論文リスト
- Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence [3.0954913678141627]
フーリエ・ニューラル演算子(FNO)に基づくモデルと偏微分方程式(PDE)を組み合わせれば,流体力学シミュレーションを高速化できる。
また、乱流の長期シミュレーションのために、機械学習モデルによって回避される必要のある純粋にデータ駆動アプローチの落とし穴についても論じる。
論文 参考訳(メタデータ) (2024-09-23T02:02:02Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
薬物発見において、分子動力学シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合の正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
我々は、標準的な数値MDシミュレーションよりも2000$times$のスピードアップを達成し、安定性の指標の下では、他のMLアプローチよりも最大80%高い効率で、NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Magnetohydrodynamics with Physics Informed Neural Operators [2.588973722689844]
本稿では,AIを用いて複雑なシステムのモデリングを,計算コストのごく一部で高速化する方法について検討する。
本稿では,2次元非圧縮性磁気流体力学シミュレーションのモデル化のための物理情報演算子の最初の応用について述べる。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Deep Learning to advance the Eigenspace Perturbation Method for
Turbulence Model Uncertainty Quantification [0.0]
乱流モデル予測における不確実性を予測するため,固有空間摂動法(Eigenspace Perturbation Method)の活用を支援する機械学習手法の概要を述べる。
我々は、トレーニングニューラルネットワークを用いて、レイノルズ応力楕円体を予測したRANSの形状の相違を予測する。
論文 参考訳(メタデータ) (2022-02-11T08:06:52Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
乱流モデルの自動検出ツールとしてマルチエージェント強化学習を導入する。
等方性乱流と等方性乱流の大規模渦シミュレーションにおけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2020-05-18T18:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。