論文の概要: Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence
- arxiv url: http://arxiv.org/abs/2409.14660v3
- Date: Wed, 25 Sep 2024 14:36:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:34:58.283826
- Title: Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence
- Title(参考訳): 2次元乱流における時空間力学のためのフーリエニューラル作用素
- Authors: Mohammad Atif, Pulkit Dubey, Pratik P. Aghor, Vanessa Lopez-Marrero, Tao Zhang, Abdullah Sharfuddin, Kwangmin Yu, Fan Yang, Foluso Ladeinde, Yangang Liu, Meifeng Lin, Lingda Li,
- Abstract要約: フーリエ・ニューラル演算子(FNO)に基づくモデルと偏微分方程式(PDE)を組み合わせれば,流体力学シミュレーションを高速化できる。
また、乱流の長期シミュレーションのために、機械学習モデルによって回避される必要のある純粋にデータ駆動アプローチの落とし穴についても論じる。
- 参考スコア(独自算出の注目度): 3.0954913678141627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-fidelity direct numerical simulation of turbulent flows for most real-world applications remains an outstanding computational challenge. Several machine learning approaches have recently been proposed to alleviate the computational cost even though they become unstable or unphysical for long time predictions. We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations and thus address computational expense of large-scale turbulence simulations. We treat the FNO model on the same footing as a PDE solver and answer important questions about the volume and temporal resolution of data required to build pre-trained models for turbulence. We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
- Abstract(参考訳): 多くの実世界のアプリケーションに対する乱流の高忠実直接数値シミュレーションは、依然として卓越した計算課題である。
長期予測において不安定あるいは非物理的になるにもかかわらず、計算コストを軽減するために、最近いくつかの機械学習アプローチが提案されている。
フーリエ型ニューラル演算子(FNO)モデルと偏微分方程式(PDE)解法を組み合わせることにより,流体力学シミュレーションを高速化し,大規模乱流シミュレーションの計算コストに対処できることを確認した。
我々は、PDEソルバと同じ基盤上でFNOモデルを扱い、乱流の事前学習モデルを構築するために必要なデータの体積と時間分解能に関する重要な質問に答える。
また、乱流の長期シミュレーションのために、機械学習モデルによって回避される必要のある純粋にデータ駆動アプローチの落とし穴についても論じる。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame
Kernel Direct Numerical Simulation Data [0.0]
この研究は、最近開発されたPIESRGANによる乱流予混合燃焼のモデリング手法を推し進めている。
その結果, 全乱流予混合火炎核の直接数値シミュレーションデータに対して, 先行実験と後続試験に良好な結果が得られた。
論文 参考訳(メタデータ) (2022-10-28T15:27:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
種々の境界条件下で定常なナビエ・ストークス方程式を解くために弱教師付きアプローチを開発する。
ラベル付きシミュレーションデータを使わずに最先端の結果を得られる。
我々は、N-S方程式の数値解を生成する複雑さを増大させる積み重ねモデルを訓練する。
論文 参考訳(メタデータ) (2021-12-13T05:08:55Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Scientific multi-agent reinforcement learning for wall-models of
turbulent flows [5.678337324555036]
大規模シミュレーションのための壁モデル発見のための科学的マルチエージェント強化学習(SciMARL)を紹介する。
現在のシミュレーションは、完全に解決されたシミュレーションよりも数桁の計算コストを削減している。
論文 参考訳(メタデータ) (2021-06-21T14:30:10Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Multi-fidelity Generative Deep Learning Turbulent Flows [0.0]
計算流体力学では、精度と計算コストの間に必然的なトレードオフがある。
本研究では,高忠実度乱流場の代理モデルとして,新しい多自由度深部生成モデルを提案する。
結果として生じるサロゲートは、物理的に正確な乱流実現を、高忠実度シミュレーションのそれよりも低い計算コストで生成することができる。
論文 参考訳(メタデータ) (2020-06-08T16:37:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。