論文の概要: Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows
- arxiv url: http://arxiv.org/abs/2502.07990v1
- Date: Tue, 11 Feb 2025 22:14:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:44:30.740352
- Title: Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows
- Title(参考訳): 複合流れの時空間スケールにおける効果的なダイナミクスの学習
- Authors: Han Gao, Sebastian Kaltenbach, Petros Koumoutsakos,
- Abstract要約: 本稿では,グラフニューラルネットワーク(GNN)とアテンションに基づく自己回帰モデルを活用したグラフベース効果的ダイナミクス学習(Graph-LED)を提案する。
本研究では,シリンダーを過ぎる流れや,レイノルズ数の範囲の後方方向のステップを流れる流れなど,流体力学の一連の問題に対する提案手法を評価する。
- 参考スコア(独自算出の注目度): 4.798951413107239
- License:
- Abstract: Modeling and simulation of complex fluid flows with dynamics that span multiple spatio-temporal scales is a fundamental challenge in many scientific and engineering domains. Full-scale resolving simulations for systems such as highly turbulent flows are not feasible in the foreseeable future, and reduced-order models must capture dynamics that involve interactions across scales. In the present work, we propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-LED), that leverages graph neural networks (GNNs), as well as an attention-based autoregressive model, to extract the effective dynamics from a small amount of simulation data. GNNs represent flow fields on unstructured meshes as graphs and effectively handle complex geometries and non-uniform grids. The proposed method combines a GNN based, dimensionality reduction for variable-size unstructured meshes with an autoregressive temporal attention model that can learn temporal dependencies automatically. We evaluated the proposed approach on a suite of fluid dynamics problems, including flow past a cylinder and flow over a backward-facing step over a range of Reynolds numbers. The results demonstrate robust and effective forecasting of spatio-temporal physics; in the case of the flow past a cylinder, both small-scale effects that occur close to the cylinder as well as its wake are accurately captured.
- Abstract(参考訳): 複数の時空間スケールにまたがる流体のモデリングとシミュレーションは多くの科学的・工学的な領域において根本的な課題である。
高乱流のようなシステムに対するフルスケールの解法シミュレーションは、当面は実現不可能であり、縮小次モデルでは、スケール間の相互作用を含むダイナミクスを捉える必要がある。
本研究では,グラフニューラルネットワーク(GNN)とアテンションベース自己回帰モデルを活用したグラフベース効果的ダイナミクス学習(Graph-LED)を提案する。
GNNは非構造化メッシュ上のフローフィールドをグラフとして表現し、複雑なジオメトリと非一様グリッドを効果的に扱う。
提案手法は, 可変サイズの非構造メッシュに対して, 時間的依存を自動的に学習可能な自己回帰的時間的注意モデルと, GNNに基づく次元性低減手法を組み合わせたものである。
本研究では,シリンダーを過ぎる流れや,レイノルズ数の範囲の後方方向のステップを流れる流れなど,流体力学の一連の問題に対する提案手法について検討した。
その結果、時空間物理の堅牢かつ効果的な予測が示され、シリンダーを過ぎる流れの場合、シリンダーの近傍で発生する小さな効果と、そのウェイクを正確に捉えることができる。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
現在のニューラルネットワークベースのモデルアプローチは、時間と空間でランダムに収集されるデータに直面したときに不足する。
そこで我々は,このようなプロセス観察から効果的に学習できる新しい手法を開発した。
我々のモデルは、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現、そしてアモータライズされた変分推論の技法を統合している。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
データ駆動サロゲートモデリングは、高忠実度数値シミュレータの安価な代替手段を提供する。
CNNは偏微分方程式の解を近似するのに強力であるが、CNNが不規則かつ非構造的なシミュレーションメッシュを扱うことは依然として困難である。
グラフ畳み込みネットワーク(GCN)に基づく代理モデルを構築し,多相流と多孔質媒体の輸送過程の時空間解を近似する。
論文 参考訳(メタデータ) (2023-07-10T09:59:35Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
我々は、非定常連続体力学を推論するための新しいマルチスケールグラフニューラルネットワークモデルであるMultiScaleGNNを紹介する。
本手法は, 海洋および大気プロセスの基本的な現象である, 対流問題と非圧縮性流体力学について実証する。
MultiScaleGNNで得られたシミュレーションは、トレーニングされたシミュレーションよりも2~4桁高速である。
論文 参考訳(メタデータ) (2022-05-05T13:33:03Z) - Predicting Physics in Mesh-reduced Space with Temporal Attention [15.054026802351146]
本稿では,トランス方式の時間的アテンションモデルを用いて,長期的依存関係をキャプチャする手法を提案する。
本手法は, 複雑な流体力学予測タスクにおいて, 競合するGNNベースラインよりも優れる。
我々のアプローチは、高次元複雑な物理課題の解決に注意に基づくシーケンスモデルの利点をもたらす道を開いたと信じている。
論文 参考訳(メタデータ) (2022-01-22T18:32:54Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。