論文の概要: Boundary Graph Neural Networks for 3D Simulations
- arxiv url: http://arxiv.org/abs/2106.11299v7
- Date: Thu, 20 Apr 2023 17:55:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 18:06:09.236143
- Title: Boundary Graph Neural Networks for 3D Simulations
- Title(参考訳): 3次元シミュレーションのための境界グラフニューラルネットワーク
- Authors: Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp
Hochreiter, Johannes Brandstetter
- Abstract要約: バウンダリグラフニューラルネットワーク(BGNN)は、ホッパー、回転ドラム、ミキサーの複雑な3次元粒状フロープロセスで試験される。
BGNNは、何十万ものシミュレーションタイムステップに対して、シミュレーションの不確実性の中で3Dグラニュラーフローを正確に再現することができる。
- 参考スコア(独自算出の注目度): 6.041255257177852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The abundance of data has given machine learning considerable momentum in
natural sciences and engineering, though modeling of physical processes is
often difficult. A particularly tough problem is the efficient representation
of geometric boundaries. Triangularized geometric boundaries are well
understood and ubiquitous in engineering applications. However, it is
notoriously difficult to integrate them into machine learning approaches due to
their heterogeneity with respect to size and orientation. In this work, we
introduce an effective theory to model particle-boundary interactions, which
leads to our new Boundary Graph Neural Networks (BGNNs) that dynamically modify
graph structures to obey boundary conditions. The new BGNNs are tested on
complex 3D granular flow processes of hoppers, rotating drums and mixers, which
are all standard components of modern industrial machinery but still have
complicated geometry. BGNNs are evaluated in terms of computational efficiency
as well as prediction accuracy of particle flows and mixing entropies. BGNNs
are able to accurately reproduce 3D granular flows within simulation
uncertainties over hundreds of thousands of simulation timesteps. Most notably,
in our experiments, particles stay within the geometric objects without using
handcrafted conditions or restrictions.
- Abstract(参考訳): データの豊富さは、自然科学や工学において機械学習にかなりの勢いを与えてきたが、物理過程のモデリングはしばしば困難である。
特に難しい問題は、幾何学的境界の効率的な表現である。
三角形化された幾何学的境界は、工学的応用においてよく理解されユビキタスである。
しかし、サイズや方向に関する不均一性のため、これらを機械学習アプローチに統合することは極めて難しい。
本研究では,粒子-境界相互作用のモデル化に有効な理論を導入し,境界条件に従うためにグラフ構造を動的に修正する新しい境界グラフニューラルネットワーク(bgnns)を提案する。
新しいBGNNは、ホッパー、回転ドラム、ミキサーの複雑な3D粒状フロープロセスでテストされている。
BGNNは計算効率や粒子流の予測精度、混合エントロピーの観点から評価される。
bgnnは、数十万のシミュレーション時間ステップのシミュレーション不確実性の中で、正確に3dの粒状フローを再現することができる。
特に、我々の実験では、粒子は手作りの条件や制約を使わずに幾何学的な物体の中に留まっている。
関連論文リスト
- Three-dimensional granular flow simulation using graph neural
network-based learned simulator [2.153852088624324]
グラフニューラルネットワーク(GNN)を用いて粒状フローのシミュレータを開発する。
シミュレータは、様々なアスペクト比でカラム崩壊の全体的な挙動を再現する。
GNSの速度は300倍の高忠実度数値シミュレータを上回る。
論文 参考訳(メタデータ) (2023-11-13T15:54:09Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
薄型シェルを用いた新しい擬似布シミュレータであるNeuralClothSimを提案する。
メモリ効率の高い解法はニューラル変形場と呼ばれる新しい連続座標に基づく表面表現を演算する。
論文 参考訳(メタデータ) (2023-08-24T17:59:54Z) - Graph Neural Network-based surrogate model for granular flows [2.153852088624324]
粒状流速は地すべりや土砂流など,様々な技術的リスクを評価する上で重要である。
従来の連続法と離散法は、大規模システムのシミュレーションにおける計算コストによって制限される。
本研究では,局所的な相互作用法則を学習することにより,粒状流の現在の状態と次の状態を予測するグラフニューラルネットワークベースシミュレータ(GNS)を開発した。
論文 参考訳(メタデータ) (2023-05-09T07:28:12Z) - Fourier Neural Operator Surrogate Model to Predict 3D Seismic Waves
Propagation [0.0]
我々は、SEM3Dという高忠実度シミュレーションコードを用いて、3万の異なる地質が生成する地動の広範なデータベースを構築している。
フーリエ・ニューラル・オペレーターは,基礎となる地質が大きな不均一性を示す場合でも,正確な接地運動を実現できることを示す。
データベースの一般化により,地質学的特徴が地盤運動に与える影響を評価するために,我々のモデルが利用できると信じている。
論文 参考訳(メタデータ) (2023-04-20T12:01:58Z) - Learning rigid dynamics with face interaction graph networks [11.029321427540829]
我々は、ノードではなくメッシュフェイス間のインタラクションを演算するFace Interaction Graph Network (FIGNet)を紹介した。
FIGNetは複雑な形状の相互作用をシミュレートする上で約4倍正確であり、スパースで剛性のあるメッシュでは8倍計算効率が高い。
実世界のデータから直接摩擦力学を学習でき、微妙なトレーニングデータを与える解析的解法よりも正確である。
論文 参考訳(メタデータ) (2022-12-07T11:22:42Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
グラフニューラルネットワーク(GNN)は、物理力学を学習するための一般的なツールとなっている。
物理法則は、モデル一般化に必須な帰納バイアスである対称性に従属する。
本モデルは,RigidFall上でのPhysylonと2倍低ロールアウトMSEの8つのシナリオにおいて,平均3%以上の接触予測精度の向上を実現している。
論文 参考訳(メタデータ) (2022-10-13T10:00:30Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
離散要素法LIGGGHTSにより生成された複雑な3次元粒状流シミュレーションプロセスの正確なモデリングに向けたグラフニューラルネットワークアプローチを提案する。
本稿では,3次元物体,境界条件,粒子-粒子,粒子-境界相互作用を扱うグラフニューラルネットワークの実装方法について論じる。
論文 参考訳(メタデータ) (2021-05-04T17:27:59Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。