論文の概要: Knowing How to Plan
- arxiv url: http://arxiv.org/abs/2106.11504v1
- Date: Tue, 22 Jun 2021 02:47:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-24 01:59:32.343678
- Title: Knowing How to Plan
- Title(参考訳): 計画の仕方を知る
- Authors: Yanjun Li (Nankai University), Yanjing Wang (Peking University)
- Abstract要約: このようなロジックを使って、モデルチェックによるノウハウベースのプランニングを行います。
特に、ノウハウの公式を目標とする高次てんかん計画の処理が可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Various planning-based know-how logics have been studied in the recent
literature. In this paper, we use such a logic to do know-how-based planning
via model checking. In particular, we can handle the higher-order epistemic
planning involving know-how formulas as the goal, e.g., find a plan to make
sure p such that the adversary does not know how to make p false in the future.
We give a PTIME algorithm for the model checking problem over finite epistemic
transition systems and axiomatize the logic under the assumption of perfect
recall.
- Abstract(参考訳): 近年,様々な計画的ノウハウ論理が研究されている。
本稿では,このような論理を用いて,モデルチェックによるノウハウベースの計画を行う。
特に、know-how式を目標とする高次の疫学計画を扱うことができ、例えば、敵がpを将来偽造する方法を知らないようにpを確実にする計画を見つけることができる。
有限エピステミック遷移系上でのモデルチェック問題に対するPTIMEアルゴリズムを提案し、完全リコールの仮定の下で論理を公理化する。
関連論文リスト
- LHPF: Look back the History and Plan for the Future in Autonomous Driving [10.855426442780516]
本稿では,歴史計画情報を統合した模倣学習プランナ LHPF を紹介する。
我々のアプローチでは、歴史的計画意図をプールする歴史的意図集約モジュールを採用している。
実世界のデータと合成データの両方を用いた実験は、LHPFが既存の高度な学習ベースのプランナーに勝るだけでなく、純粋に学習ベースのプランナーがエキスパートを上回った最初の事例であることを示している。
論文 参考訳(メタデータ) (2024-11-26T09:30:26Z) - Depth-Bounded Epistemic Planning [50.42592219248395]
本稿では,動的てんかん論理に基づく新しい計画法を提案する。
新規性は、計画エージェントの推論の深さを上界bに制限することである。
推論深度の境界b内における解を持つ計画タスクに関して、完全なものであることを示す。
論文 参考訳(メタデータ) (2024-06-03T09:30:28Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - A Semantic Approach to Decidability in Epistemic Planning (Extended
Version) [72.77805489645604]
我々は決定可能性を達成するために新しい意味論的アプローチを用いる。
具体的には、知識の論理S5$_n$と(知識)可換性と呼ばれる相互作用公理を拡大する。
我々は,本フレームワークが,独立した知識である共通知識の有限的非固定点的特徴を認めていることを証明した。
論文 参考訳(メタデータ) (2023-07-28T11:26:26Z) - Lifted Sequential Planning with Lazy Constraint Generation Solvers [28.405198103927955]
本稿では,Lzy Clause Generation(LCG)に基づく制約プログラミング(CP)へのアプローチを用いて,オープンな可能性について検討する。
本稿では,いわゆるリフト型因果エンコーディングに基づく新しいCPモデルを提案する。
提案手法は,計画手順の少ない計画インスタンスに対して,最適な逐次計画における最先端の手法と非常によく比較可能であることを報告する。
論文 参考訳(メタデータ) (2023-07-17T04:54:58Z) - Capturing (Optimal) Relaxed Plans with Stable and Supported Models of
Logic Programs [4.020523898765405]
計画問題を考えると、この問題の緩和計画を作成するために命令された全てのアクションのサブセットは、論理プログラムの安定なモデルでキャプチャできることを示す。
そこで我々は,緩和計画問題の1つの因果的および1つの診断的エンコーディングを論理プログラムとして導入し,両者が支持するモデルを用いて緩和計画のキャプチャを行う。
論文 参考訳(メタデータ) (2023-06-08T09:34:38Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z) - RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs [91.71504177786792]
本稿では知識グラフに基づく推論のための論理規則の学習について研究する。
論理規則は、予測に使用されるときに解釈可能な説明を提供するとともに、他のタスクに一般化することができる。
既存の手法は、検索スペースの検索の問題や、スパース報酬による非効率な最適化に悩まされている。
論文 参考訳(メタデータ) (2020-10-08T14:47:02Z) - Proof-Carrying Plans: a Resource Logic for AI Planning [1.7403133838762446]
AI検証と説明可能なAIの最近の傾向は、AI計画技術を検証することができるかどうかという疑問を提起している。
本稿では,AIプランナが作成した計画の検証に使用できる新しい資源論理,Proof Carrying Plans (PCP) ロジックを提案する。
論文 参考訳(メタデータ) (2020-08-10T14:45:52Z) - Think Too Fast Nor Too Slow: The Computational Trade-off Between
Planning And Reinforcement Learning [6.26592851697969]
計画と強化学習は、シーケンシャルな意思決定に対する2つの重要なアプローチである。
計画と学習のトレードオフが重要であることを示す。
提案手法は,探索時間(長期計画)からモデルフリーなRL(計画なし)まで多岐にわたる新しい計画学習アルゴリズムのスペクトルを同定し,その中間に最適な性能を実現する。
論文 参考訳(メタデータ) (2020-05-15T08:20:08Z) - STRIPS Action Discovery [67.73368413278631]
近年のアプローチでは、すべての中間状態が欠如している場合でも、アクションモデルを合成する古典的な計画が成功している。
アクションシグネチャが不明な場合に,従来のプランナーを用いてSTRIPSアクションモデルを教師なしで合成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-30T17:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。