論文の概要: A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints
- arxiv url: http://arxiv.org/abs/2106.11577v1
- Date: Tue, 22 Jun 2021 07:24:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-23 22:40:42.521126
- Title: A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints
- Title(参考訳): 期待制約付き凸確率最適化のための乗算器の確率線型化近似法
- Authors: Liwei Zhang and Yule Zhang and Jia Wu and Xiantao Xiao
- Abstract要約: 計算可能近似型アルゴリズム,すなわち乗算器の線形化近近凸法を提案する。
予備的な数値計算の結果は,提案アルゴリズムの性能を示すものである。
- 参考スコア(独自算出の注目度): 8.133190610747974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper considers the problem of minimizing a convex expectation function
with a set of inequality convex expectation constraints. We present a
computable stochastic approximation type algorithm, namely the stochastic
linearized proximal method of multipliers, to solve this convex stochastic
optimization problem. This algorithm can be roughly viewed as a hybrid of
stochastic approximation and the traditional proximal method of multipliers.
Under mild conditions, we show that this algorithm exhibits $O(K^{-1/2})$
expected convergence rates for both objective reduction and constraint
violation if parameters in the algorithm are properly chosen, where $K$ denotes
the number of iterations. Moreover, we show that, with high probability, the
algorithm has $O(\log(K)K^{-1/2})$ constraint violation bound and
$O(\log^{3/2}(K)K^{-1/2})$ objective bound. Some preliminary numerical results
demonstrate the performance of the proposed algorithm.
- Abstract(参考訳): 本稿では、凸期待関数を不等式凸期待関数の集合で最小化する問題を考察する。
この凸確率最適化問題を解くために,計算可能な確率近似型アルゴリズム,すなわち乗算器の確率線形化近似法を提案する。
このアルゴリズムは、確率近似と従来の乗算器の近似手法のハイブリッドと見なすことができる。
穏やかな条件下では、アルゴリズムのパラメータが適切に選択された場合、このアルゴリズムは目的の削減と制約違反の両方に対して$o(k^{-1/2})$の期待収束率を示し、ここで$k$は反復数を表す。
さらに、高い確率で、アルゴリズムは、$O(\log(K)K^{-1/2})$制約違反境界と$O(\log^{3/2}(K)K^{-1/2})$客観的境界を持つことを示す。
予備的な数値計算の結果は,提案アルゴリズムの性能を示すものである。
関連論文リスト
- Fast Minimization of Expected Logarithmic Loss via Stochastic Dual
Averaging [8.990961435218544]
本稿では,対数障壁を用いたB$-sample双対平均化法を提案する。
Poisson逆問題に対して、我々のアルゴリズムは$smashtildeO(d3/varepsilon2)$ timeで$varepsilon$解を得る。
量子状態トモグラフィーの最大線量推定を計算するとき、我々のアルゴリズムは $smashtildeO(d3/varepsilon2)$ time で $varepsilon$-optimal Solution を得る。
論文 参考訳(メタデータ) (2023-11-05T03:33:44Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
合成最適化のためのプロジェクションフリー条件付き勾配型アルゴリズムを提案する。
提案アルゴリズムで要求されるオラクルの数と線形最小化オラクルは,それぞれ$mathcalO_T(epsilon-2)$と$mathcalO_T(epsilon-3)$である。
論文 参考訳(メタデータ) (2022-02-09T06:05:38Z) - Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for
Linear Programming [5.126924253766052]
提案手法は,高い確率で鋭いインスタンスを解くための線形収束率を示す。
また、制約のない双線型問題に対する効率的な座標ベースのオラクルを提案する。
論文 参考訳(メタデータ) (2021-11-10T04:56:38Z) - Conservative Stochastic Optimization with Expectation Constraints [11.393603788068777]
本稿では,データ指標や環境変数に関して,目的関数と制約関数が期待する凸最適化問題を考察する。
このような問題を解決するためのオンラインおよび効率的なアプローチは、広く研究されていない。
本稿では、制約違反をゼロとし、$Oleft(T-frac12right)$Optimity gapを実現する新しい保守的最適化アルゴリズム(CSOA)を提案する。
論文 参考訳(メタデータ) (2020-08-13T08:56:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
本研究では,凸損失関数の分布から得られた個体群損失を最小化する問題について検討する。
Bassilyらによる最近の研究は、$n$のサンプルを与えられた過剰な人口損失の最適境界を確立している。
本稿では,余剰損失に対する最適境界を達成するとともに,$O(minn, n2/d)$グラデーション計算を用いて凸最適化アルゴリズムを導出する2つの新しい手法について述べる。
論文 参考訳(メタデータ) (2020-05-10T19:52:03Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
最小二乗推定器は、制約付き凸プログラミング(QP)問題を$(n+1)d$変数と少なくとも$n(n-1)$線形不等式制約で解くことで計算可能であることを証明している。
一般に非常に大規模な凸QPを解くために、我々は2つの効率的なアルゴリズムを設計する。1つは対称ガウス・シーデルに基づく乗算器の交互方向法(tt sGS-ADMM)であり、もう1つは半滑らかニュートン法(tt)によって解かれる部分プロブレムを持つ近似拡張ラグランジアン法(tt pALM)である。
論文 参考訳(メタデータ) (2020-02-26T11:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。