Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for
Linear Programming
- URL: http://arxiv.org/abs/2111.05530v3
- Date: Fri, 29 Dec 2023 22:00:19 GMT
- Title: Nearly Optimal Linear Convergence of Stochastic Primal-Dual Methods for
Linear Programming
- Authors: Haihao Lu, Jinwen Yang
- Abstract summary: We show that the proposed method exhibits a linear convergence rate for solving sharp instances with a high probability.
We also propose an efficient coordinate-based oracle for unconstrained bilinear problems.
- Score: 5.126924253766052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a recent interest on first-order methods for linear programming
(LP). In this paper,we propose a stochastic algorithm using variance reduction
and restarts for solving sharp primal-dual problems such as LP. We show that
the proposed stochastic method exhibits a linear convergence rate for solving
sharp instances with a high probability. In addition, we propose an efficient
coordinate-based stochastic oracle for unconstrained bilinear problems, which
has $\mathcal O(1)$ per iteration cost and improves the complexity of the
existing deterministic and stochastic algorithms. Finally, we show that the
obtained linear convergence rate is nearly optimal (upto $\log$ terms) for a
wide class of stochastic primal dual methods.
Related papers
- Oracle Complexity Reduction for Model-free LQR: A Stochastic
Variance-Reduced Policy Gradient Approach [4.422315636150272]
We investigate the problem of learning an $epsilon$-approximate solution for the discrete-time Linear Quadratic Regulator (LQR) problem.
Our method combines both one-point and two-point estimations in a dual-loop variance-reduced algorithm.
arXiv Detail & Related papers (2023-09-19T15:03:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Strictly Low Rank Constraint Optimization -- An Asymptotically
$\mathcal{O}(\frac{1}{t^2})$ Method [5.770309971945476]
We propose a class of non-text and non-smooth problems with textitrank regularization to promote sparsity in optimal solution.
We show that our algorithms are able to achieve a singular convergence of $Ofrac(t2)$, which is exactly same as Nesterov's optimal convergence for first-order methods on smooth convex problems.
arXiv Detail & Related papers (2023-07-04T16:55:41Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - A Sequential Quadratic Programming Method with High Probability Complexity Bounds for Nonlinear Equality Constrained Stochastic Optimization [2.3814052021083354]
It is assumed that constraint function values and derivatives are available, but only programming approximations of the objective function and its associated derivatives can be computed.
A high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived.
arXiv Detail & Related papers (2023-01-01T21:46:50Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - A stochastic linearized proximal method of multipliers for convex
stochastic optimization with expectation constraints [8.133190610747974]
We present a computable approximation type algorithm, namely the linearized proximal convex method of multipliers.
Some preliminary numerical results demonstrate the performance of the proposed algorithm.
arXiv Detail & Related papers (2021-06-22T07:24:17Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.