Quantum Nanophotonics in Two-Dimensional Materials
- URL: http://arxiv.org/abs/2106.11736v1
- Date: Tue, 22 Jun 2021 13:13:40 GMT
- Title: Quantum Nanophotonics in Two-Dimensional Materials
- Authors: Antoine Reserbat-Plantey, Itai Epstein, Iacopo Torre, Antonio T.
Costa, P. A. D. Gon\c{c}alves, N. Asger Mortensen, Marco Polini, Justin C. W.
Song, Nuno M. R. Peres and Frank H. L. Koppens
- Abstract summary: 2D materials-based nanophotonics has been growing at a rapid pace, triggered by the ability to design nanophotonic systems with in situ control.
A wide palette of polaritonic classes have been identified, comprising ultra confined optical fields, even approaching characteristic length scales of a single atom.
These advances have been a real boost for the emerging field of quantum nanophotonics, where the quantum mechanical nature of the electrons and-or polaritons and their interactions become relevant.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of 2D materials-based nanophotonics has been growing at a rapid
pace, triggered by the ability to design nanophotonic systems with in situ
control, unprecedented degrees of freedom, and to build material
heterostructures from bottom up with atomic precision. A wide palette of
polaritonic classes have been identified, comprising ultra confined optical
fields, even approaching characteristic length scales of a single atom. These
advances have been a real boost for the emerging field of quantum
nanophotonics, where the quantum mechanical nature of the electrons and-or
polaritons and their interactions become relevant. Examples include, quantum
nonlocal effects, ultrastrong light matter interactions, Cherenkov radiation,
access to forbidden transitions, hydrodynamic effects, single plasmon
nonlinearities, polaritonic quantization, topological effects etc. In addition
to these intrinsic quantum nanophotonic phenomena, the 2D material system can
also be used as a sensitive probe for the quantum properties of the material
that carries the nanophotonics modes, or quantum materials in its vicinity.
Here, polaritons act as a probe for otherwise invisible excitations, e.g. in
superconductors, or as a new tool to monitor the existence of Berry curvature
in topological materials and superlattice effects in twisted 2D materials.
Related papers
- Electrically defined quantum dots for bosonic excitons [0.0]
We show electrically-defined quantum dots for excitons in monolayer semiconductors.
Our work paves the way for realizing quantum confined bosonic modes where nonlinear response would arise exclusively from exciton--exciton interactions.
arXiv Detail & Related papers (2024-02-29T15:45:22Z) - Electron-assisted manipulation of polaritonic light-matter states [0.0]
We investigate strong light-matter coupling through monochromatic and modulated electron wavepackets.
In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter.
We show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets.
arXiv Detail & Related papers (2023-12-11T16:28:32Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Topological photon pairs in a superconducting quantum metamaterial [44.62475518267084]
We use an array of superconducting qubits to engineer a nontrivial quantum metamaterial.
By performing microwave spectroscopy of the fabricated array, we experimentally observe the spectrum of elementary excitations.
We find not only the single-photon topological states but also the bands of exotic bound photon pairs arising due to the inherent anharmonicity of qubits.
arXiv Detail & Related papers (2020-06-23T07:04:27Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - The integration of photonic crystal waveguides with atom arrays in
optical tweezers [0.0]
We describe an apparatus that overcomes several significant barriers to current experimental progress with the goal of achieving strong quantum interactions of light and matter by way of single-atom tweezer arrays strongly coupled to photons in 1-D and 2-D PCWs.
Technology advances relate to efficient free-space coupling of light to and from guided modes of PCWs, silicate bonding of silicon chips within small glass vacuum cells, and deterministic, mechanical delivery of single-atom tweezer arrays to the near fields of photonic crystal waveguides.
arXiv Detail & Related papers (2020-03-02T22:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.